How to know a good model
Richard Veryard, August 2001

Quality goals

Good Model

What are the modellers aiming for? Apart from having a good scope, what else
makes a good model? (Quality of end-product)

Comprehensible to all interested parties

Correct - i.e. accurately representing the enterprise, to the satisfaction of all
interested parties.

Externally complete - i.e. completely describing the enterprise, covering all
required functionality.

Internally complete and consistent - i.e. with no missing cross-references, no
unused objects, etc. (Some aspects of this can be automatically checked by an
appropriate modelling tool.)

Well-documented - i.e. with adequate and meaningful descriptions of all objects

Non-redundant - i.e. only representing each fact/requirement once, without
unjustified duplication or overlap between objects.

Coordinated - i.e. consistent with architectures and policies, and with an
appropriate level of consistency with other related models.

Stable - i.e. capable of absorbing minor future changes to the enterprise without
major changes to the model. (This characteristic is also known as resilience or
robustness.)

Good Modelling Process

We can also identify the quality criteria for the modelling process:

Ease of agreement by users of the model
Ease of agreement by users of the design implications of the model

Minimum ‘thrashing’ - i.e. going round in circles before agreement can be
reached

Minimum discovery of additional requirements during design and subsequent
phases

Copyright © 2001 Richard Veryard. All rights reserved. Page 1

How to know a good model

+ Relatively few surprises during implementation
« Low maintenance costs of system (owing to changes in model)
< Maximum learning for participants and entire organization

« Efficient & effective - i.e. achieving a good result with a reasonable expenditure
of time and energy

Good Design

A design judgement needs to be evaluated at three levels:

« at the level of the system being designed, where the design should represent a
good pattern, and embody good design values and practices

< at the supersystem level, where the designed system should contribute in a
positive way to some broader system

« at the subsystem level, where the design should create an integrating
structure/environment in which the lower-level detail can be worked out

A good design is a collection of good design judgements. We can talk about the
overall value of a design - this is precisely what is required for a business case. A
good design judgement increases the overall value of the design, but this overall
value cannot be distributed arithmetically between the judgements that make up the
design.

As the end-product of a design process, a socio-technical system needs to be
evaluated in three ways:

1 From a combined socio-technical perspective
2 From a social perspective
3 From a technical perspective

In other words, some of the quality characteristics apply to either the social or
technical aspects of the system, while some of the quality characteristics apply to
both at once.

From a combined perspective, a systems design should be:

% Well-modularized - i.e. defining modules that have maximum cohesion and
minimum connection

« Measurable and testable - i.e. the non-functional requirements should be
objective and (if possible) quantified.

« Coordinated - i.e. consistent with architectures and policies, and with an
appropriate level of integration with other related systems

From a social perspective, a systems design should be:

7

« Usable - i.e. fitting into the intended business environment, and providing useful
support to the user in carrying out his/her job

Copyright © 2001 Richard Veryard. All rights reserved. Page 2

How to know a good model

7

% User-friendly - i.e. with computer functionality matching the structure of the
business operations, so that the system works the way the user thinks

From a technical perspective, a systems design should be:

7

« Implementable - i.e. technically feasible on the chosen target platform

7

« Performant - i.e. with an adequate balance between speed, throughput and
efficient use of computer resources.

Good Design Process

We can also identify the quality criteria for the design process:
« Correctness - i.e. no design errors found during testing or operations
« Maximum reuse of design components

< Minimum ‘thrashing’ - i.e. going round in circles before agreement can be
reached

« Low maintenance costs of system (other than owing to changes in model)
< Maximum learning for participants and entire organization

« Efficient & effective - i.e. achieving a good result with a reasonable expenditure
of time and energy

Reviewing quality of model
Introduction

In this section, we consider approaches and techniques for reviewing the quality of
an information model. An inspection process may consider the structure of the
model, and may test it for its ability to correctly represent all present and most
future possibilities. Stability analysis considers the ability of the model to absorb
likely future requirements without excessive difficulty.

Validation criteria

Good entity types

7

+ Clear Boundary. There must be a clear boundary between the occurrences of
the entity type, and the rest of the universe. In other words, if EMPLOYEE is to be
an entity type, there must be no ambiguity as to who should count as an
employee and who not.

% Common Form. The things that we are interested in about the entities must be
reasonably alike, which then gives some structure to the entity type. We can
define this structure in terms of the attributes of the entity type, and the
relationships between the entity type and other entity types. Thus we can restate
this condition as saying that the occurrences of the entity type are to have more
or less the same attributes and relationships.

Copyright © 2001 Richard Veryard. All rights reserved. Page 3

How to know a good model

« Standard Identification. The entity occurrences must be identifiable in a
standard way, capable of being distinguished as individuals, and practically
countable. (Countability is a consequence of identifiability - if you want to know
how many entities of a particular type you have got, you have to be able to avoid
counting one entity twice.)

« Finite. The number of occurrences of the entity type must be finite. This is
because the method is pragmatic - infinite models may be theoretically
interesting, but are of no practical value.

« Unity of Purpose. The entity occurrences must play similar roles in the
business or organization. It is likely that a common set of business processes are
associated with a single entity type. The entity type must represent a single
business concept. (Beware of two-faced entity types that fail to satisfy this
criterion.)

Entity definitions

An entity definition should state two things clearly: a membership rule and an
identity rule.

% The membership rule defines when something counts as an occurrence of the
entity type. For example, does the entity type EMPLOYEE include or exclude
recruits, pensioners, freelancers, women on maternity leave?

% The identity rule defines when two things count as the same occurrence of the
entity type, or where one occurrence stops and the next one starts. For example,
does the A40 count as one occurrence of ROAD or several? Does the journey from
London to Oxford count as the same RoOUTE as the journey from Oxford to
London? Does the journey from London to Oxford by train count as the same
ROUTE as the journey from London to Oxford by road?

You need both the membership rule and an identity rule in order to count the
occurrences of an entity type. Thus the ability to count occurrences is a good test of
these rules. But the mere fact that the modelling team has estimated the volume of
occurrences is not proof that their definitions are perfect.

To test the definitions, you have to come up with test cases. A test case for an entity
type definition will be in the form of a candidate entity occurrence (i.e. an entity that
may or may not be one or more occurrences of the entity type). A given entity may be
a test case for more than one entity type - in other words, it may not be clear
whether it is an occurrence of one entity type or another or perhaps even both.

A further criterion that a definition must satisfy is that the number of occurrences
must be finite. For example, the entity type GEOGRAPHICAL AREA could have been
defined as any continuous area of land. Or the entity type BLEND could have been
defined as any possible mixture of raw materials, in any proportions. These
definitions would not work, because there would be infinitely many occurrences. The
business cannot be interested in an infinity of things.

Even with finite sets, it is possible to define an entity type with an unmanageably
large number of occurrences. For example, the entity type HUMAN GRouUP could have

been defined as any combination of living human beings. (This is a finite number: 2"
- 1, where n is the number of living human beings. Such large numbers are
effectively useless.) There must be some manageably finite subset in which the
business is actually interested; thus what is often needed is some restriction on the
definition, to identify this finite subset.

Copyright © 2001 Richard Veryard. All rights reserved. Page 4

How to know a good model

Two-faced entities

One difficulty with information modelling, is that of two-faced entity types that serve
more than one purpose. This is found particularly with abstract entity types such as
MARKET OF ACCOUNT. The principle of data sharing seems to urge that each entity type
serve as many purposes as possible, but there are situations where a single term
hides a multiplicity of purposes, and must be pulled apart.

A good example of a two-faced entity type occurring in many models is PRODUCT.
This has two aspects: what is bought by the customer, and what is delivered to the
customer. Superficially these appear equivalent, but they often turn out not to be.
Consider tinned peaches. The consumer selects a brand, and perhaps doesn’t care
where the peaches are grown. Indeed, the same brand of tinned peaches may
contain Californian peaches at one time of year, and South African peaches at
another time of year. Furthermore, peaches from the same source may be tinned
under several different brand names (including supermarkets’ own brand labels).

Thus we have many facts about a tin of peaches, including its brand name and retail
price, as well as the source of the peaches inside. Confusion arises if we try to model
all these facts in a single entity type called pPrRODUCT. Instead, it is usually a good
idea to distinguish two entity types: PRODUCT and BRAND, with a many-to-many
relationship between them.

The same physical object may be sold in a number of different contexts. A piece of
foam rubber may be sold in sports shops as a mat, in specialized health-care shops
as a physiotherapy aid, in furnishing shops as a sofa lining, and in an art gallery
(after some mutilation) as a sculpture.

With software products, a similar situation seems to hold. The customer asks for
‘Microsoft Word’, and gets ‘Microsoft Word UK Version 4.0’. So the software title
would be the BRAND, and the software version would be the PrRODUCT. However, some
customers may ask for a specific version, so the situation is more complex than with
peaches, where the customer can only get what the manufacturer chooses.

One way to get yourself completely confused is to build an intersection between two
two-faced entity types, for example PRODUCT and MARKET. Then the ambiguity is
multiplied.

MARKET
PRODUCT before sale at sale after sale

what the customer buys

what the customer gets

How do we recognize two-faced entity types? One sign is an apparent conflict of
business objectives - for example to increase the flexibility of supply without
proliferating brands, or to increase the segmentation of target markets without
fragmenting the support infrastructure. Another sign is irreconcileable differences
between rival descriptions of the entity type, such as in estimates of size.

Redundancy

One of the aims of information modelling is to identify and (perhaps) remove
redundant objects. We define redundancy to mean that a fact is represented in the
model twice. Since facts are represented by objects, or combinations of objects, this

Copyright © 2001 Richard Veryard. All rights reserved. Page 5

How to know a good model

is equivalent to saying that one object in the model can be derived from other objects
in the model.?

Some writers insist that all possible redundancy should be removed; here we take a
more moderate approach, and insist that the redundancy should be analysed and
controlled, but not necessarily removed.

There are two reasons for removing redundancy: to make the model simpler (and
thus easier to understand and use), and to make the ensuing system more efficient.
During analysis, we should only remove redundant objects for the first of these two
reasons, since the second reason is a matter for systems design, but we need to
establish all the facts of redundancy at this stage.

Storing a fact more than once opens the door to inconsistency, if the two versions of
the same fact are incompatible. Thus non-redundancy makes it easier to ensure
consistency.

However, some situations demand a higher level of control, where consistency needs
to be actively checked, rather than merely automatically ensured. Two or more
versions of a fact are deliberately captured, so that they may be compared, and
discrepancies highlighted. The classic example of this is double-entry book-keeping,
which indicates its redundancy by its very name.

Types of redundancy

There are four types of redundancy:

1 Redundancy by repetition - two or more objects in the information model
representing the same fact in the real world.

For example, if the price on a customer invoice for an item is always the same
as the price quoted in the catalogue, it would be redundant to represent this
price twice, as an attribute both of PRODUCT ITEM and of CUSTOMER INVOICE ITEM.

2 Redundancy by derivation - an object in the model can be logically or
arithmetically calculated from other objects in the model

For example, the price on a customer invoice for an item is always equal to the
price quoted in the catalogue, minus the discount negotiated with that
customer.

Some further examples of derivation are listed below.

3 Partial redundancy by repetition - two or more objects in the information
model sometimes or usually represent the same fact in the real world, but
there are some exceptions

For example, the price on a customer invoice for an item is always the same as
the price quoted in the catalogue, unless the sales manager has authorized a
different price for this sales order.

4 Partial redundancy by derivation - an object in the model can sometimes or
usually be logically or arithmetically calculated from other objects in the
model, but there are some exceptions

! Devotees of the relational model often use a different definition of redundancy, tied to the specifics of nth
normal form. Note that some intelligent trandlation of such conceptsis required between the relational model and
the entity-relationship model.

Copyright © 2001 Richard Veryard. All rights reserved. Page 6

How to know a good model

For example, the price on a customer invoice for an item is always equal to the
price quoted in the catalogue, minus the discount negotiated with that
customer, unless the sales manager has authorized a different price for this
sales order.

Derived attributes

The most obvious form of redundancy is where attributes are repeated. More
complex forms of redundancy arise where an attribute can be derived from one or
more other attributes. We can identify the following common types of derivation.

1 To change units of measure (fixed) - e.g. to switch between feet and metres,
multiply/divide by a constant.

2 To change units of measure (variable) - e.g. to switch between dollars and
pounds, multiply/divide by a currency exchange rate obtained by table look-
up.

3 To extract data (fixed) - e.g. to derive a calendar month from a date.

4 To extract data (variable) - e.g. to derive the age from the date of birth

(depends on the current date).

5 To obtain a derived attribute by (arithmetical) manipulation of the other
attributes of the same entity occurrence - e.g. GROSS AMOUNT equals NET
AMOUNT plus TAX AMOUNT.

6 To obtain a single numeric value from a series of (input) numeric values. The
simplest case is where the inputs are the values of a single attribute of a
defined set of occurrences of some related entity type, and the derivation is
based on a function such as COUNT, TOTAL, MINIMUM, MAXIMUM OF AVERAGE. For
example, ACCOUNT CLOSING BALANCE equals ACCOUNT OPENING BALANCE plus sum
of (TRANSACTION AMOUNT)S.

In some of these examples, there is a loss of information in the derivation, in other
words the derived attribute contains less information than the attribute(s) from
which it is derived. In such examples, the derivation is necessarily one-way. So
although we can derive the age of a person (in years) from his/her date of birth, we
cannot derive the date of birth from the age alone. (This loss of information, or one-
way derivation is sometimes referred to as information entropy). In such examples,
there is no difficulty determining which attribute is derived, and which is non-
derived.

In other examples, however, the derivation could be two-way. Thus we can either
derive a measurement in feet from the measurement in metres, or the reverse. Thus
it may be difficult to determine which of the two measurements is derived, and
which is non-derived. The decision may finally be arbitrary, or based on majority
convenience.

Derived attributes - design considerations

A derived attribute can be implemented in two ways: either stored and restored
whenever the attribute values change, from which it is derived; or calculated and
recalculated whenever its value is needed.

In the former approach, the derivation is performed at the earliest possible moment;
in the latter approach, the derivation is performed as late as possible, on a ‘just-in-
time’ basis. (There may be other, more complex design solutions, where the
derivation is performed neither at the earliest possible, nor at the latest possible

Copyright © 2001 Richard Veryard. All rights reserved. Page 7

How to know a good model

moment, but at some intermediate point in time; for example, by a batch update
program run overnight, when there may be spare computing capacity. Such
solutions, although common, are more complex because the status of any given data
item may be unclear.)

The choice between these approaches is a design decision; it has nothing to do with
the meaning and use of the attribute itself, and has only to do with the technical
efficiency of the computer software. This decision, therefore, should be left to the
latest possible point in the software development process. (However, some tools blur
this distinction between analysis and design, and encourage such design decisions
to be made prematurely, in order to streamline the software development process.)

Inclusion of derived attributes

A derived attribute should be included in the information model:

1 When it represents a key performance measure (KPM) for the business or
business area. Many managers measure performance of a business unit by a
small number of ratios, and every such ratio is a derived attribute.

2 When it represents a shared information need of several users.

3 When it is required or referred to by several business processes.

4 When it is required as a status, partitioning or identifying attribute.
5 When its derivation is non-trivial.

During the early stages of analysis, it may be difficult to be certain whether to
include a particular derived attribute in the information model. If in doubt, it is
usually better to include it anyway, and then review the situation when analysing
the logic of the business processes, or towards the end of the whole analysis project.
At this stage, the necessity of including a particular derived attribute should be
clearer, and unnecessary attributes can be deleted from the model. (Note: this
requires conforming to strict model management procedures.)

Soecific derivations

In some circumstances, a derived attribute or relationship be turn out to be
specific. This means that the derivation specifies a particular attribute value or
entity occurrence.

E.g., if there is a basic attribute AGE, then the user may have information needs
such as OLDER THAN SPOUSE, OLDER THAN 18, OLDEST IN AREA Or OLDEST IN LONDON, all
derived from AGE. These may be what is meaningful to the user.

Such specific derivations must be treated with especial caution, because of the
danger of their proliferation. (If OLDEST IN LONDON, then why not also OLDEST IN WEST
LONDON, OLDEST IN EALING Or OLDEST IN WEST EALING ?)

The contrary should also be considered: a non-derived relationship or attribute may
be specific, in the sense that it specifies some other object or value, but that object
or value is not represented in the model. For example, there might be an attribute
OLDEST IN LONDON, but no entity type of which London is an occurrence, and no
attribute of which London is a permitted value.

Such a relationship or attribute is of course not derivable from anything in the
model. However, there may be a strong argument for considering adding the

Copyright © 2001 Richard Veryard. All rights reserved. Page 8

How to know a good model

specified object(s) to the model, in order to define the specific derivation within the
model.

External derivations

Any attribute which is outside the control of an enterprise can be considered basic
for the enterprise. Thus the postcode or zip code is under the control of the Post
Office, and could be derived from the address and other geographical information.
However, it is usually not necessary to model such complex geographic derivations
explicitly.

Derived relationships

A relationship can also be derived, if it duplicates information represented elsewhere
in the model. Apparently the most common situation is where one relationship is the
‘sum’ of two other relationships.

a

P —<] Q

C

] R

Figure 1: Redundant Relationship?

When | teach classes in information modelling, | display Figure 1 and ask which is
the redundant relationship. There is always someone who tells me that the
relationship ¢ can be derived from the other two, and is therefore redundant. But |
haven't yet told them what the letters stand for, so it is a trick question!
Redundancy cannot be determined from structure alone, but depends on an
equivalence of meaning.

Before you read further, think of at least one situation, fitting this structure, in which c
is redundant, and at least one situation in which c is not redundant.

If the relationship ¢ between P and R is exactly equivalent to the relationship a
between P and Q plus the relationship b between Q and R, then the relationship ¢
can indeed be derived from the other two, and is therefore redundant.

signs RENTAL
PERSON < AGREEMENT

covers

arives RENTAL

VEHICLE

Figure 2: Another Redundant Relationship?

Copyright © 2001 Richard Veryard. All rights reserved. Page 9

How to know a good model

Suppose the business insists that the only person that can drive a rental vehicle is
the person that signs the rental agreement. We can express this by saying that, for
each occurrence of RENTAL VEHICLE, the occurrence of PERSON that you get by
following the coveRrs relationship followed by the siGNs relationship is the same as
the occurrence of PERSON that you get by following the DRIVES relationship. (In short:
DRIVES = SIGNS + COVERS.) Then the DRIVES relationship is redundant, because it
represents a fact that is already otherwise represented.

On the other hand, if the person that drives the vehicle need not be the same as the
person that signs the agreement, then the DRIVES relationship is not redundant,
since it represents a fact that is already independently represented.

This notion becomes more difficult to apply, however, when we progress to more
complex examples. Figure 3 shows an example, modified from a real project.

PRODUCT PRODUCT
OPTION (<] OPTION [>=-{ PRODUCT

TYPE VALIDITY
defines Z%Xvalidates j&
PRODUCT PRODUCT
o<l OPTION [>o- SALE

CHOSEN

Figure 3: Redundant Relationship — more complex example

The two intersection entity types are PRODUCT OPTION VALIDITY, which indicates that a
particular PRODUCT OPTION TYPE is available for a given PRODUCT, and PRODUCT OPTION
CHOSEN, which indicates the options selected by a given cCUSTOMER, within a given
PRODUCT SALE.

The entity type PRODUCT OPTION VALIDITY is basically a look-up table, indicating to the
salesman what s/he can offer to a customer. The entity type PRODUCT OPTION CHOSEN
is basically a sales order detail. The relationship VALIDATES between them has a bad
name, and raises all sorts of problems about exceptions and changes (what happens
when a large customer is allowed a non-standard option, what happens when an
product option is discontinued). Whereas the relationship DEFINES is much clearer,
and allows changes and overrides to the look-up table to be managed properly.

Thus we would want to remove the VALIDATES relationship, and retain the DEFINES
relationship. Or if only the vALIDATES relationship were included, and the DEFINES
relationship were missing, we would want to replace the VALIDATES relationship with
the DEFINES relationship.

This is a special case of the structure shown in Figure 4:

P Q P> R

: Ad Ae

] S P T

Figure 4

Copyright © 2001 Richard Veryard. All rights reserved. Page 10

How to know a good model

Suppose that a + d = c. In other words, for each occurrence of S, you get the same
occurrence of P via the relationship c, as via the two relationships a followed by d.

Suppose also that b + d = e + f. In other words, for each occurrence of S, you get the
same occurrence of R via the two relationships b followed by d, as via the two
relationships e followed by f.

Clearly there is some redundancy. Which relationship is redundant? We could
remove relationship c, without any loss of information, since it is equivalent to a + d.
In the absence of R and T, this solution would probably be adopted. But in this
example, removal of ¢ only addresses one of the two redundancies. And once c is
gone, all of the remaining relationships are required (i.e. none of them could be
removed without loss of information from the model).

However, if c is retained and d is removed, it does away with both redundancies.
Navigation between Q and S requires the intersection of the two navigation paths ac
and bef.2

If we have a model with d but without c, we have a situation we can call partial
redundancy, since there is no relationship that is entirely redundant. There are
many other possible structures with this property. Such situations often emerge
when entity types have many-to-one relationships to entity types that are merely
intersections. It is recommended, wherever this is found, to follow the following
procedure:

1 Verify that the relationships concerned are mandatory.

2 Verify that the two (or more) navigation paths always yield the same result, in
other words that the two (or more) ‘foreign keys’ truly have the same meaning.
If they do not, make sure this is clear from the names of the relationships.

3 Seek to restructure the information model to remove the redundancy. If the
model does not have the relationship c, it may need to be added, so that the
relationship d can be eliminated.

4 Alternatively, build the necessary integrity conditions into the process logic to
control the redundancy, if it is convenient to retain it. (This is not addressed
here.)

Besides the redundancy argument, there is another advantage of replacing d with c.
It is that a relationship to an intersection entity type is often hard to name and
define, whereas a relationship to a non-intersection entity type is often more
meaningful and stable. Thus the change not only improves the logical quality of the
information model, it may also improve its clarity and relevance to the business.

In conclusion, we should note that there are very complex structures that can arise
in an information model, and considerations of relationship redundancy are by no
means always easy to resolve. The analyst must understand and confirm the
business rules and integrity conditions that are being expressed. Weaknesses in an
information model will show up as awkward or redundant structures in the
database. A good modelling tool makes this visible, which should provide help to the
analyst.

2 It will be seen that this solution assumes the intersection of a and b is unique. In other words, for each pair <p,r>
of occurrences of P and R, there is exactly one occurrence of Q. But if thisis not true, there will be another
identifier of Q that can be ‘normalized’ out, and separately related to both Q and S.

Copyright © 2001 Richard Veryard. All rights reserved. Page 11

How to know a good model

Derived entities

If all the attributes and relationships of an entity type are derived, then the entity
type itself is derivable. Such an entity type may be useful, however, because it
encapsulates some information that is required frequently, perhaps by several
different business processes.

For example, if a supermarket has electronic point-of-sale equipment, to record
details of each item sold, the current stock levels could be derived from two entity
types: DELIVERED ITEM and soLD ITEM (perhaps together with a factor for breakage,
spillage and shoplifting). However, it may be useful to define a derived entity type
called stock ITEM. This enables the derivation algorithm to be defined in one place
(against the derived object), rather than repeatedly for each business decision
process that refers to the stock levels.

Benefits of derived objects

Defining an algorithm once, rather than repeatedly, has three benefits:

1 It reduces the amount of analysis work, since the algorithm only has to be
defined once

2 It reduces the amount of system development and maintenance work, since
any code required to implement the algorithm only needs to be generated once.
Subsequent changes in the algorithm can be carried out in one place.

3 It ensures consistency of decisions made using these derived data.

This is one of the ideas behind the object-oriented approach, but can equally be
supported using the entity-relationship-attribute model, since entities, relationships
and attributes can all be regarded as ‘objects’ (in a very abstract sense).

Finite knowledge

Here is an example of how the need for a finite model may affect the definitions of
entity types and relationships.

Suppose we have a many-to-many involuted relationship on PERSON, indicating that
one person is a parent of another. Not everyone has children, so the relationship
must be optional downwards. But everyone has two parents, so it would seem
appropriate to make the relationship mandatory upwards.

parent of

PERSON

Figure 5

But although this conforms to biological theory, it doesn’t correspond to what we
know (or are capable of knowing). Not everyone has two known parents. Even if A
knows that B was his ancestor, and B knew that C was his ancestor, it doesn’t
follow that anyone now can trace the line of descent from C to A. If you try to make

Copyright © 2001 Richard Veryard. All rights reserved. Page 12

How to know a good model

the relationship mandatory, you cannot stop anywhere, you have to go all the way
back to the apes (or angels, if you prefer). If you want to stop somewhere, then the
first person in your model doesn’t have an ancestor in your model.

parent of

PERSON

Figure 6

This illustrates two general points: first, that a model has to be a finite subset of the
real world. We can only cope with a finite number of occurrences of PERSON. This has
the consequence that some concepts (such as the parent of relationship in this
example) do not bear their common-sense meaning. Instead, the restrictions of the
model impart a subtle difference to what the concept means and how it can be used.

And the second point is that an information model, although it is not limited to what
we happen to know already, is limited to what it is possible for us to know. (We may

have to make some practical rules about the level of certainty that we require to
accept something as knowledge.)

Signs of Trouble

Entity types

< Entity type name hard to find. Failure to find an acceptable name may indicate
that the concept is not useful, but it may also mean that there are several
overlapping concepts that must be disentangled.

< Entity type refers to existing representation of something: REPORT, LINE, ITEM,
RECORD, CODE, RESULT.

< Single-occurrence entity types HEAD OFFICE

% Container entity types ARCHIVE, CATALOG, DIRECTORY, STORE

Relationships

+ Relationships that imply transactions or events. This suggests another hidden
entity type.

¢ Hierarchical structures with fixed number of levels. Consider replacing with
involuted relationship.

« Universal relationships — where everything is related to everything — provide no
information

Copyright © 2001 Richard Veryard. All rights reserved. Page 13

How to know a good model

Attributes

« An attribute can only belong to one entity type. Thus two attributes, with
perhaps the same name, but apparently belonging to different entity types,
should be examined to discover whether they are in fact the same attribute
(although it is not always a trivial matter to determine this).

< An attribute can only exist once. Thus two similar attributes belonging to the
same entity type, for example: STOCK LEVEL and INVENTORY QUANTITY. should be
examined to discover whether they are in fact the same attribute, under two
different names.

« Repeating groups. This suggests another hidden entity type.

Improving the Model

Questions about entity types

« How does it enter the world of interest? How long may it have existed before we
become interested in it? Are we then interested in its history before that point
(i.e. backdated interest)?

< How does it leave the world of interest? Does it continue to exist in some sense
outside the world of interest? Can it then re-enter the world of interest, and do
we care to connect it to its previous manifestation?

% How does it change? How much does it have to change before it becomes
something else?

+ Can it merge with another entity? Can it exchange aspects of itself with another
entity? Can it divide into two or more entities?

« How do we count several occurrences of the same entity type? How do we tell
that we only have one occurrence, rather than several, or several rather than
one? What does this mean, for this entity type?

« What roles does it play? Do the answers to the above questions differ according
to the role we are focussed upon?

« How do we discover that two entities we have met playing two different roles are
in fact the same? What does this mean? How does it change our perception (if at
all) to assert identity between two previously separate entities?

Improving relationships

The weakest form of relationship is a transferable fully optional many-to-many
relationship, since this imposes fewest restrictions on the entity types. A mandatory
one-to-many relationship is much stronger, since it rules out many possible
combinations.

Some modellers prefer to start with relationships in their strongest form, and then
look for counter-examples. They will therefore assert, for example, that every
CUSTOMER always does business in a single CURRENCY, until they can find evidence to
the contrary.

Other modellers prefer to start with relationships in their weakest form, and then
add properties to the relationships only when these can be demonstrated. They will

Copyright © 2001 Richard Veryard. All rights reserved. Page 14

How to know a good model

therefore assume that at least one cusTOMER does business in more than one
CURRENCY, unless they can find a good reason to restrict this.

The advantage of the former strategy is that the models will be simpler and easier to
understand. Complexity is added only when required, and it is added progressively,
thus enabling participants to follow the process. The disadvantage is that many
people become attached to their models, and find it difficult to motivate themselves
to find contrary evidence. Thus the model remains simple, and fails to reflect the
true complexity of the area being modelled.

The advantage of the latter strategy is that it is safer. The model will be more
powerful, and the modellers will be motivated to find as many valid simplifying
restrictions as possible. The disadvantage is that the initial version of the model
may be extremely complicated, and thus exclude some participants from the
process.

Test cases

Introduction

This section contains guidelines for the critical review of an information model. It
will be relevant to those performing quality inspections on entity-relationship models
produced for strategic planning, analysis, or any other purpose. Although models for
different purposes, at different stages of the systems development life cycle, carry
different expectations about the level of detail and the level of abstraction, similar
principles and methods apply.

This may seem to beg the question, whether quality assurance is best served by
external experts carrying out quality inspections. By external here we mean external
to the modelling team, thus a person who was not involved in building the model.
External inspections can be carried out by employees of the same company, while a
consultant who played a significant role in the project, is perceived to have played
such a role, and is therefore implicated in any weaknesses, is not external in this
sense.

External inspections inevitably create an air of tension. It is never easy (although
important) for the inspector to phrase criticisms in a positive way, to avoid getting
the modelling team’s backs up. And it is not easy for the modelling team to remain
cheerful and positive while its hard work is taken apart. If the inspections are to be
carried out by such external inspectors, therefore, we can expect the modelling team
to become defensive and the inspectors to become adversarial.

Full-time inspectors tend towards one of two possible demeanours: a fixed joviality
or an unshakable gloom. For this reason, it may be healthier to have part-time
inspectors, who perform an occasional inspection interspersed with other activities,
rather than professional critics.

For the inspections to be successful, it may even be necessary for the focus of the
inspection not to be predictable by the modelling team, lest it be possible to
deliberately hide the dodgy parts of the model from the inspector. A degree of
idiosyncrasy on the part of the inspector may therefore be worth cultivating. And if a
model is to be inspected several times during the project, there may be as much
benefit in having a different inspector each time (who will uncover different
problems) as keeping the same inspector (who will become familiar with the model).

Copyright © 2001 Richard Veryard. All rights reserved. Page 15

How to know a good model

Internal inspections, where the team itself carries out a structured walkthrough,
may avoid some of the confrontation of external inspections, but despite this they
may be less effective.

But it is not our intention here to analyze the psychology of criticism in detail, nor to
prescribe managerial and motivational techniques for making one’s criticism more
palatable. Our intention here is merely to provide techniques for spotting potential
weaknesses in an information model.

Reading and critiquing models

Many people find it very difficult to be objective about a model that they have not
participated in building. They critique it by comparing it with the model they would
have built themselves. This is a disastrous technique, and usually leads to complete
rejection of the model by the inspectors, and complete rejection of the inspection by
the modellers.

A much better technique is to try and understand what the model is saying. What
would reality be like, if the model were true? What would the implications be? Is
the model internally consistent?

Thus, instead of going in heavy with both boots:

“Well, | wouldn’t have done it like that, oh no. This bit is obviously
redundant, and what on earth do you need that bit for?”

the inspector should be able to achieve just as much with a softer approach:

“Gosh, you see the enterprise in much more complex detail than | do. I'd
never have thought you’d need this bit. And to be honest, I’'m still having
difficulty working out what you are going to do with that bit.”

Model test procedure

The procedure is then as follows:
1. The inspector generates a test case.

2. The modelling team then says which entity type(s) the test case belongs to, and
whether it counts as one occurrence or several.

3. If the modelling team shows uncertainty or disagreement, then this suggests that
the test case has not been considered before. It may then be worth following the
test case through the rest of the business model - are the relationships and
attributes optional or mandatory, are the processes valid?

4. Even if the modelling team shows no uncertainty or disagreement, the answer
should be compared with the definitions. If the definition is too simplistic or too
vague, then it should be revised/expanded. It is always worth adding good test
cases as examples.

5. If the modelling team claims that the test case is entirely outside the scope of
their model, this should be documented and notified to Development
Coordination. If the modelling team asserts or guesses that the test case has
been covered in a different business area, then this should be checked against
the model of that area.

Copyright © 2001 Richard Veryard. All rights reserved. Page 16

How to know a good model

Generating test cases

There is a problem here. How does the inspector generate the test cases in the first
place? Familiarity with the industry or function certainly helps, but is not
absolutely essential. Here are some suggestions:

% Look for entities playing several roles simultaneously. For example,
subcontractors acting both as ORGANIZATIONAL UNIT and as SUPPLIER.

« Look for the beginning and end of the entity life cycle. What about people before
they are employed, after they are employed? Are they covered in the entity type
definition? Do they contradict the relationship and attribute properties?

< Pay attention to the abstract entity types. Are their identifiers meaningful?
Would you know where one occurrence stopped and the next one started? Is this
clear from the definition?

« Actual performance is likely to be compared with plans, budgets, forecasts,
actual performance elsewhere.

« Time and place are always difficult areas. Consider whether the model has
established a sufficiently general and powerful set of concepts.

« What are the obvious information needs for management and control of the
area? How are these supported by the model?

Relationship and attribute definitions

The inspector must also examine the definitions of relationships and attributes,
especially those where the meaning is not obvious from the name.

< Every attribute called SOMETHING TYPE Or SOMETHING CATEGORY needs to be
defined. If there is a set of permitted values (as for example with SOMETHING
STATUS) these may also need to be defined.

« The definition of an attribute of an entity type should make it possible to state
the value of the attribute for any given occurrence of the entity type.

« The definition of a relationship between two entity types should make it possible
to state, for any given occurrence of one entity type, which (if any) occurrences of
the other it is paired with.

A test case for an attribute definition is therefore an entity occurrence (possibly
hypothetical). The question is then: what would be the value of the attribute for this
entity. If the answer is unclear, if the attribute could take several values, or a value
outside the defined domain, or (for a mandatory attribute) no value at all, then the
attribute is problematic.

For example, consider an attribute that depends on a subjective assessment of the
entity. Even for a well-known occurrence of the entity type, everybody might differ as
to the value of that attribute. You could consider replacing the subjective
assessment with a more objective measurement. The trouble with subjective
judgements is precisely that there can be several of them, by different people at
different time. If it is necessary to retain such a subjective judgement in the model,
then either make it clear in the attribute definition whose judgement is to be
captured, or define a separate entity type called, say, JUDGEMENT Or ASSESSMENT.

Copyright © 2001 Richard Veryard. All rights reserved. Page 17

How to know a good model

A test case for a relationship definition is also an entity occurrence (also possibly
hypothetical). The question is then: what is paired with this entity under this
relationship? If the answer is unclear, or if the answer conflicts with the properties
of the relationship, then the relationship is problematic.

For example, there might be a relationship between poLicy and pLAN, called
INFLUENCES. How do you define which policies influence which plans? Perhaps all
policies influence all plans to some extent, so it is not a useful relationship. You
should explore the plans influenced by a given policy, or the policies influencing a
given plan, to discover what information really needs to be modelled.

Strategy versus detail

What is the difference between reviewing a strategic information architecture and an
information model for analysis purposes? Should the same standards apply? Some
might argue that the above procedures are too pedantic for strategic models. It all
depends on what you think the strategic information architecture is for. And what
are the consequences of getting it wrong.

The point of a strategic information architecture, in my view, is to identify
opportunities for generalization and abstraction, so that analysis projects can be
given clear and minimally overlapping scope. This means that the definitions of the
major entity types should be thought out fairly thoroughly. Even if the entity type
has no formal identifier, it should at least have an identifying strategy. (In other
words, some thought needs to have been given to the kind of identifier that would be
appropriate.) However, the relationships and attributes need not be defined in detail.

We could give many examples of inadequate thought during the strategic planning
phase, causing serious problems for subsequent projects. Here is just one example.
In the Oil business, petrol is sold, not directly to motorists but to petrol stations.
Some departments refer to the petrol station as the customer, while others refer to
the motorist as the customer. In one Oil Company’s information architecture,
however, there was a major entity type cCUSTOMER, completely overlooking this
ambiguity. This caused problems for several development projects, and for
Development Coordination. Such homonymy was too broad to be sorted out within
the information model of a single business area, and needed to have been addressed
at a strategic level.

Permutations and combinations

Where we have entity subtypes, or attributes with a small finite number of possible
values, we can generate all the permutations of these values or subtypes, to check
that we have considered every combination.

A useful albeit primitive tool for doing this is to create a strip of card for each
attribute (including the classifying attributes for subtypes). Onto each strip you
write the possible values. Then the strips are placed parallel on the table, and slid
up and down, to generate test cases.

Copyright © 2001 Richard Veryard. All rights reserved. Page 18

How to know a good model

red
orange tin
yellow copper
green North silver
oo blue oo South oo gold oo
indigo East platinum
violet West

Figure 7

This technique can also be used to generate test data.

Conclusion

An information model develops through a dialectical process of example and
counter-example. An external inspector contributes to this, with test cases against
the model, and at the same time can assess the overall quality of the model by its
ability to absorb such test cases. But our method is not dependent on external
inspection; it is equally open to the modelling team, and to consultants attached to
the team, to generate these test cases.

But the generation of such test cases is an art, not a science. There is no
mechanical way of producing them. Their production requires a mixture of relevant

experience, abstract models (e.g. general models of marketing intelligence, or of
management control) and intuition.

Model inspection checklist
Initial data model

< Are all entity types within the scope?

« Has each entity type been properly described?

« Does the definition make clear what our interest in the entity type is?

« Is each relationship a true relationship?

« Are any new entities types really subtypes of existing entity types?

+ Do selected entity subtypes have sufficient common attributes or relationships?
« What business "rule" does the relationship represent?

% Are there any redundant relationships?

< Are there any many to many relationships? How are these justified?
Final data model

7

« Has each entity type been completely defined?

Copyright © 2001 Richard Veryard. All rights reserved. Page 19

How to know a good model

« Have classifying attributes been identified for each subtype?

« Are values/permitted ranges of classifying attributes specified?
« Has a unique identifier been declared for each entity type?

+ Has each relationship been defined?

« Should any remaining involuted relationships be expanded into separate entity
types? Which ones?

« Has cardinality and optionality of relationships (eg. one to many) been
confirmed?

« Have these business rules been confirmed by a user group?

« Could these business rules change in the future? Specify changes.

Copyright © 2001 Richard Veryard. All rights reserved. Page 20

