
Copyright © 2001 Richard Veryard. All rights reserved. Page 1

Information Notions
Richard Veryard, August 2001

This document contains a brief explanation and commentary of some of the common
and technical terms of data and information modelling.

Abstraction

Abstraction makes a model more powerful and broad by distancing it a little from
the specific business situation we started with.

Abstraction clears away some of the specifics, and allows us to see the structure. If
abstraction is taken to the extreme, no specifics are left at all. Except for skilled
mathematicians, who are trained to understand highly abstract structures with no
direct relationship to the real world, most people find such a model
incomprehensible. Thus abstraction should be practised in moderation, leaving a
sufficient amount of specifics for the model to remain meaningful.

“The relationship between the ease with which a model can be understood and its
abstraction level does not appear to be a simple one. As one attempts to be more
all-embracing on a given abstraction level, the ease of understanding … will surely
deteriorate.

“As the abstraction level increases from the lowest possible level, the
comprehensibility will initially increase because of the reduction in the number of
concepts … to assimilate. As the abstraction level is raised further and further, the
sheer abstractness counterbalances the gains achievable by abstracting.”1

There are three methods of abstraction: aggregation, classification and
generalization.

Aggregation

Aggregation is the putting together of different things, to form a coherent whole.
Thus, instead of talking about BUILDING and STREET and TOWN and COUNTY and
POSTCODE, these may all be lumped together as ADDRESS. Or instead of talking about
a CPU and a keyboard and a disk drive and a monitor, these may be bundled
together into COMPUTER.

People may be aggregated into teams or departments; products and services may be
aggregated into compound products (thus, for example, when you buy a hifi, a one-
year guarantee and repair service may be bundled in as part of the product price).

This form of abstraction is useful when decisions are made at the level of the
aggregate or compound. However, sometimes what is required is the opposite of
aggregation: the analysis of information down to data atoms. A data atom is the
smallest unit of information, free of interpretation or ambiguity, that cannot be
derived from any other information.

1 William Olle et al., Information Systems Methodologies: A framework for understanding (Addison-Wesley,
1988)

Information Notions

Copyright © 2001 Richard Veryard. All rights reserved. Page 2

Information needs are usually compound rather than atomic. In Chapter 5, we will
show how complex information can be built up from data atoms, and conversely how
compound information can be decomposed into data atoms.

It is often asserted that a computerized information system should capture
information at the atomic level, and then provide various levels of summary and
aggregation, depending on the level of interested management, or on the purpose for
which the information is required. This is indeed an attractive approach, because
the structure of the atomic data is likely to be more stable than the structure of the
day-to-day information needs compounded from it, but it is not always practicable.
Sometimes the information does not exist in atomic form, and it would be a burden
to the business to create or collect it.

Consider the Post Office. The atomic entity is a single letter being posted. It is almost
certainly impractical to capture data on each individual letter. However, information
is required about the throughput and bottlenecks of letter handling. There are
various ways of providing this information. Perhaps the letters are batched into
bundles, and data are captured for each bundle. Or perhaps instead of tracking
every single letter, a random sample of letters is selected and tracked in detail. Thus
the simple and atomic entity type LETTER (with millions of occurrences per day) is not
modelled; instead the model includes complex entity types such as LETTER BUNDLE or
LETTER TRACKING SAMPLE (with far fewer occurrences per day, allowing monitoring and
control processes to be carried out effectively).

The trouble with such aggregated or sampled entity types is that they are arbitrary.
Whereas the entity type LETTER would provide stability to the information model,
because it is fundamental to the business of the Post Office, the compound entity
types are not stable. The Post Office could want to change its bundling mechanism,
or its sampling mechanism, and thereby invalidate the definition of the entity type in
question. Therefore a system designed on the basis of LETTER BUNDLE or LETTER
TRACKING SAMPLE is less flexible, more vulnerable to changes in the business
procedures, than a system designed on the basis of LETTER.

An alternative is to design a computerized information system to break the data
down into data atoms. This is already done with some marketing systems, where
you start with the total sales figures, and then use statistics from market research
to break these figures down. Clearly such a breakdown will be an approximation,
but perhaps other situations could be conceived that would be wholly accurate.

Archive

IT practitioners have a specialized meaning of archive. It's what we do to data that
nobody ought to want any more, but we aren't allowed to delete it altogether, so we
wipe it off the main database and stuff it onto tapes in a vault and God help anyone
who wants to read it.

But archive also represents organizational or cultural memory. Derrida draws
attention to the fact that the prefix arche (found in both archive and architecture)
represents a starting point or founding act in two senses – where things begin from,
and where things derive their authority from.

Atomic Data

See Aggregation

See Grain, Granularity

Information Notions

Copyright © 2001 Richard Veryard. All rights reserved. Page 3

Attribute

An item of information that describes an entity. For example, the attributes of the
entity type PERSON may possess the attributes: NAME, ADDRESS, HOME PHONE NUMBER,
An attribute is in fact a type of information, general to the occurrences of an entity
type. Each occurrence of the entity type may have a value for the attribute. Thus for
the entity type WAREHOUSE, three different occurrences may have attribute values as
shown in the three columns that follow:

attribute values

LOCATION Newton Milton Crichton

CAPACITY (sq metres) 20,000 5,000 12,000

FRIDGE CAPACITY ? Yes No Yes

TELEX NO 457246 568358 578396

Bandwidth

The quantity and complexity of interactions across an interface or business
relationship. The capacity of an interface or relationship, in terms of its ability to
handle quantity and complexity of interactions.

Cardinality

A rule governing the number of pairings across a relationship that a single
occurrence can participate in. Thus the number of instances that appear at each
end of a relationship.

In data modelling, cardinalities are usually defined as Zero, One or Many. UML
allows more complicated rules to be defined – allowing a range of numbers, or a set
of ranges. UML calls this multiplicity instead of cardinality – and this is therefore
the term used in most of the OO world.

Rumbaugh, one of the main authors of UML, has argued that it is strictly incorrect
to use the word cardinality at all.

Characteristic Feature

See Classification

Class

A set of identifiable objects. A class must have a membership rule – which tells us
whether an object belong to the class or not – and an identity rule – which tells us
whether two members of the class are the same. See Identity.

For implementation purposes, a class must be finite – in other words, only allow for
a finite number of members. Thus the following specifies a type, but not a class: “A
string of characters, of arbitrary length.” If you wanted to implement that as a class,
you’d need to find a way of cutting it down to size.

Classification

One of the ways we simplify and make sense of the world is by dividing people and
things into classes. This reduces the amount of information we have to collect,

Information Notions

Copyright © 2001 Richard Veryard. All rights reserved. Page 4

maintain and consider. If a teacher assumes that all eight-year-old boys are the
same, if a recruitment officer assumes that all black women engineering graduates
are the same, or if an advertising draftsman assumes that all consumers of
chocolate are the same, this saves the trouble of considering each individual
separately.

Classification of some sort is a necessary fact of life. We want to be able to
discriminate between capable and incapable, safe and dangerous, polite and rude,
even perhaps good and evil. But sometimes classification is arbitrary; and there
may be as many classifications as there are interested parties.

The very word ‘discrimination’ is often used to denote unjust or unfavourable
treatment of an identifiable group of people. But it is a fallacy to think that
classification itself, or discrimination are themselves inherently undesirable. After
all, unfair discrimination can only be recognized (let alone corrected) by a similar
(but not necessarily equally unfair) discrimination: if a black woman engineer wishes
to prove that she has been unfairly discriminated against because of her colour or
sex, she must herself classify herself in this way.

Classification of people is not just a necessary evil, but is (most of the time) a useful
and acceptable procedure. Consider schools, for example, where at first sight the
word ‘class’ appears to have a rather different meaning. However, schoolchildren are
divided into classes by some classification, based on age (usually), sex (often), ability
(possibly), mother tongue (perhaps), or some other characteristics. (For the rich, for
the physically disabled or musically talented, and for religious minorities, there may
even be separate schools.) Too great a diversity of children within a class makes it
impossible for the teacher to communicate effectively with the whole class.
Educationalists may argue at great length exactly which characteristics should be
used, and exactly how much diversity or uniformity is desirable, but few of them
would expect a 16-year-old bookworm, who spoke three languages but whose
English was rudimentary, to be forced to learn alongside a 9-year-old who couldn’t
yet read, and only spoke English.

Classification of physical objects causes much less concern. British Rail may
classify its buildings into Stations, Offices, Workshops, and so on. This could result
in a classifying entity type BUILDING TYPE, related to the entity type BUILDING. This
would for example enable policy decisions (such as frequency of repainting) to be
made once for each type of building, instead of once for each building, thus reducing
the number of decisions that have to be made.

A good way to discover such classifying entity types is to examine the attributes of
an entity type, and ask: why does a given occurrence of the entity type have a
particular value.

For example, in a building supplies wholesaler, the entity type PRODUCT has an
attribute UNITS OF MEASURE, as shown in the following table.

Information Notions

Copyright © 2001 Richard Veryard. All rights reserved. Page 5

Product Name Units of Measure Product Type?

Wallpaper pattern 4711 Metres Wallpaper

Wallpaper paste (domestic) Litres Paste

Wallpaper paste (industrial) Litres Paste

Wallpaper pattern 4712 Metres Wallpaper

Crimson Gloss Paint Litres Paint

Paintbrush 6 inches Each Tool

Wallpaper brush (9 inches) Each Tool

If all patterns and textures of wallpaper have the same units of measure (i.e.
metres), and all colours and consistencies of paint have the same units of measure
(i.e. litres), then it may be worth introducing a second entity type (as implied by the
third column in the table), and making UNITS OF MEASURE an attribute of PRODUCT
TYPE instead of PRODUCT.

This kind of classification can sometimes help increase the flexibility and reduce the
redundancy of a model, and is often worth considering.

� � �

Some useful thoughts on membership rules can be obtained from Wittgenstein,
whose followers distinguish between characteristic features, which are likely to
belong to an object of a given class, and specific features, which are common to all
members of a given class.

Some more jargon has been introduced by anthropologists, which can borrowed
here. Monothetic classification defines a class in terms of specific features.
Polythetic classification defines a class in terms of characteristic features.

Information Scientists have usually assumed class membership can be defined
monothetically, despite Wittgenstein’s famous counter-example, based on his
definition of the class GAME.

Whereas operational entity types (such as EMPLOYEE) can usually be defined
monothetically, strategic entity types (such as COMPETITIVE THREAT) often cannot. The
natural definitions of such entity types may include words like ‘typically’. To avoid
this, the model may fall back on definitions that make the adhoc judgement explicit,
by specifying a judge, or a judging process. (“A competitive threat is anything
identified by the strategic planning director as a competitive threat.”) However, it is
still useful to document the characteristic features.

The behaviour of an entity is usually a characteristic feature, rather than a specific
feature. Thus it is usually inadequate to define an entity type merely in terms of
what it does (or what its occurrences do). This can be like defining a dog as
something that eats dogfood. A good definition of an entity type specifies what it is
(or what its occurrences are).

A definition of an entity type in terms of what the occurrence might do (as with
COMPETITOR or DANGEROUS DOG) is even more difficult to treat objectively. What the
marketing department (or the dog-catcher) needs is a way of recognizing members of
the entity type before they display the potential behaviour. Thus DANGEROUS DOG
may have to be defined by specific characteristics, such as breed or size.
COMPETITOR may have to be defined in terms of those characteristics that make an
organization capable of mounting a competitive threat, rather than in terms of
competing products already on the market.

Information Notions

Copyright © 2001 Richard Veryard. All rights reserved. Page 6

Component

A growing number of CBSE experts steer away from the simple term component –
speaking more precisely of component specification, component implementation,
component object, and so on. The concept of component has apparently vanished –
distributed somehow between several more precise and narrowly defined concepts.

M y view is that the original concept of component survives – sustained by the
articulation between these more precise concepts.

Thus a component takes the form of an association between a service and a software
device. The device implements the service, the service specifies the device. The
component is neither the service alone, nor the device alone – it is the relationship
that is established between them.

A component is therefore not a fixed thing. It is this declared (and possibly dynamic)
linkage between a parcel of capability and a parcel of service.

The focus is not on the identity of the component, but on the act of componenting:
the (always provisional) declaration that a given lump of business capability, or a
given lump of software, suitably wrapped, shall match the demands of a given
service – until something better or cheaper comes along.

For many purposes, however, it is useful to fall in with conventional idiom: to talk
about components as if they were objects. But beware – there are two rival
conventions to contend with.

Some people have an inside-out definition – a component is essentially a lump of
software with certain properties. And some people have an outside-in definition – a
component is essentially a set of services accessed through a specified interface
whose implementation satisfies certain properties.

Business components also suffer from the same ambiguity, although this is not
formally developed to the same degree as in the software industry. Some people will
use an inside-out definition, resting on some notion of capability, while others will
use an outside-in definition, resting on some notion of service.

Obviously if you show the same configuration to these people and ask how many
components can you see, how much usage or reuse has been achieved, you will get
quite different answers.

These different notions of component can only be reconciled, not at an abstract
theoretical level, but through practical engagement with the business and
technological drivers of a specific project or situation.

The component relationship is a many-to-many one. The device implements the
service, the service specifies the device. One service may be implemented several
different ways, by different devices. One device may satisfy many different
specifications, describing different services, accessed via one or many interfaces.

In practice, components often fall short of this ideal definition. It may be more
accurate to say that the device claims to implement the service, while the service
tries to specify the device.

Conceptual Model

A model supposed to represent the business requirements, or the business domain.

Information Notions

Copyright © 2001 Richard Veryard. All rights reserved. Page 7

Countable

The term ‘countable’ has a practical sense, namely the practical feasibility of
counting. (Countability is a consequence of identifiability - if you want to know how
many entities of a particular type you have got, you have to be able to avoid
counting one entity twice.)

This is distinct from the mathematical sense of a (possibly infinite) mapping to the
natural numbers.

CRUD

Create/Read/Update/Delete. See Data.

Data

Data means: that which is given (to an organization or community) (from the past).

Among the data there will be records of recent transactions and decisions, results of
surveys and analyses, mixed up with a lot of much older stuff. But in order for an
organization to assimilate these various data, the data must themselves be
organized. And for learning to take place, data must be reorganized.

And this is where we slip into infinite loops. The organization that organizes and
reorganizes its own data, its own memory, its own archive, is thereby organizing and
reorganizing itself.

The traditional IT view of data is of something that can be Created, Read, Updated
and Deleted - sometimes known as CRUD. This appears to be true of "physical" data
storage, where the binary patterns on a magnetic disk can be rearranged or erased
(although techniques exist for reading supposedly erased data - see Palimpsest). But
from a "logical" business viewpoint there are only two meaningful operations: Read
and Write.

Data Dictionary

See Repository.

Data Warehouse

A data warehouse can be described from the outside as a very large component
offering a range of data services, through a number of well-defined interfaces.
Internally, the data warehouse may be implemented through multiple heterogeneous
mechanisms, and may even be distributed across multiple platforms / locations,
which suggests a component-based internal architecture, but this complexity can be
hidden from data users.

This approach separates two aspects of Data Warehousing:

v how you specify and introduce (gradually, or all at once) a set of data services
that link to some notion of business process and business value

v how you support these data services with an (evolving) assembly of new pieces
and legacy pieces

Information Notions

Copyright © 2001 Richard Veryard. All rights reserved. Page 8

Designation

A term introduced by Michael Jackson in an attempt to clarify what models mean.2

Briefly, a designation is a link between a sign (such as “customer”) and what the
sign designates or signifies. Jackson considers that what is essentially signified by
“customer” is the recognition rule – how you know that something is a customer.

Drill-Down

Progressive decomposition or decapsulation – getting more and more detail and
complexity on demand.

Encyclopaedia

See Repository.

Entity

An entity is any object of interest within the area being modelled, about which
information may be collected, manipulated or stored. Entities can be people,
material things, events, locations, or more abstract concepts and groupings.

Entities are classified into types: an entity type is a class of similar entities. For
example, in the Payroll subject area, the relevant entity types could perhaps include
EMPLOYEE, SALARY PAYMENT, TAX CATEGORY and EXPENSE CLAIM.

A particular employee – Jacob Zlàddyr, for example – is said to be an occurrence of
the entity type EMPLOYEE.

When talking informally and imprecisely, people (including myself) often use the
term entity to mean either entity type or entity occurrence. However, it is
important to keep a clear distinction between these two notions in formal
specifications.

Entity–Relationship (ER) diagram

A box-and-line notation for data and information models. The boxes represent
entity types, and the lines between the boxes represent binary relationships between
entity types.

Epistemology

A fancy word for what we know and how we know it.

Fetish

The tendency to describe a property as an attribute of a single entity, when it should
properly be described as a relationship between two entities, is known as fetishism.
(Marx identified economic forms of fetishism; Freud identified psychological forms;
both follow the same logical structure.)

2 Michael Jackson, Software Requirements and Specifications – A Lexicon of Practice, Principles and Prejudices.
Addison-Wesley, 1995.

Information Notions

Copyright © 2001 Richard Veryard. All rights reserved. Page 9

A good example of this is where an attribute represents a subjective assessment of
the entity type. For example, in the EMPLOYEE entity type, there might be an attribute
called PROMOTION PROSPECTS. This is potentially misleading, because it hides the
source of the assessment. Or in the PROJECT PROPOSAL entity type, there might be an
attribute called ESTIMATED BENEFIT. This is also potentially misleading, because it
hides the source of the estimate.

Foreign Key

A mechanism for storing relationships between entities, whereby the primary key of
one entity is stored as an attribute (the so-called Foreign Key attribute) in the other
entity.

Generalization

Generalization is the putting together of similar things, by selectively ignoring their
differences. For example, photocopiers are not the same as computers, but a model
might usefully lump them together as OFFICE EQUIPMENT ITEM.

Generalization is a useful way of reducing the number of entity types in a model.
Generalization is unavoidable in building an information model, since without any
generalization at all, each entity type would only have one occurrence.

The key question is not whether to generalize at all, but how much to generalize,
and where to stop generalizing.

Grain, Granularity

Grain is a term that originates in photography. It refers to the degree of detail and
precision contained in an image - the pixels or dots per inch - or preserved and
communicated by a given medium, such as a film or screen.

An image is grainy if the imprecision is visible - in other words, even if you can't see
the individual dots, you can see that the image is composed of dots.

In information management, granularity refers to the degree of detail or precision
contained in data.

Multiplication Where lots of measurements are taken, granularity refers to the intervals
(in space or time) between the measurements.

Division Where entities are being sorted into categories, granularity refers to the
choice between a large number of narrow categories or a smaller number of
broad categories.

Where a group (such as a community or market) is being divided into
subgroups, granularity refers to the number of subgroups.

Where a space (such as a network of requirements or solutions or
activities) is being carved into manageable chunks, granularity refers to the
size of the chunks. (If a clustering approach is used, then the desired
granularity will typically be one of the input parameters of the clustering
algorithm.)

In modelling, granularity refers to the degree of detail and precision contained in a
model.

In some domains, there may be a maximum granularity - in other words, perfect
precision. Data with maximum granularity is known as atomic data.

Information Notions

Copyright © 2001 Richard Veryard. All rights reserved. Page 10

When you are modelling something from a single perspective, granularity is often not
very important. A single data item is modelled as a single attribute, with a defined
granularity.

Granularity becomes an important issue for data modelling when you are trying to
map or merge information across multiple systems or data stores – because the
likelihood is that the granularity doesn’t match. It is an issue for the flexibility of
the data model and artefacts designed from it.

Granularity is also a problem with distributed systems, especially where web
services are involved, since it may affect the number of service calls across a
network, perhaps by an order of magnitude. It may also affect the burstiness of the
distribution of service.

And when you are trying to merge data from several sources into a single data
warehouse, there are significant technical performance implications of the
granularity decision. Some data warehouse experts recommend storing everything
into the data warehouse as atomic data – on the grounds that the atomic level is the
most stable level, and also represents the highest common factor – but this
approach is problematic in some domains. In any case, it places a great burden on
the conceptual data modelling phase, to ensure that the atomic level has been
correctly identified.

Simplistic data modelling assumes that there is a clear distinction between atomic
data and derived (molecular) data – but it doesn’t work out as clearly as this in
practice, and this issue may have sweeping implications for system architecture and
design.

Homonym

A word that is used for two or more different things, in different contexts. For
example, in a purchasing application, ORDER means PURCHASE ORDER; while in a
sales application, ORDER means SALES ORDER.

Identifier

A mechanism within a data model for establishing identity.

Entity occurrences are identified using keys. A simple key is a single attribute that
uniquely identifies the occurrence. A compound key is a combination of identifying
attributes and relationships that jointly identify the occurrence.

Most database management systems (DBMS) require that one unique and
unchangeable identifier is selected as the primary key. Among other things, this key
is used internally by the DBMS for maintaining data structure and integrity

Identity

Identity means - how do we recognize or refer to something as the same again. The
ancients knew two stars, the morning star and the evening star - but these turned
out to be different manifestations of the same planet (Venus). The customer who has
just bought a sack of potatoes happens to be the same person who bought a chip
pan from the hardware store next door (which we might discover if we had access to
his credit card information).

Information Notions

Copyright © 2001 Richard Veryard. All rights reserved. Page 11

For many purposes, two things are the same if we cannot tell them apart. Identity
amounts to a lack of difference. And we can define information as "a difference that
makes a difference".

In conceptual data modelling, each entity type has a requirement for identity. This
entails the ability to recognize an entity as the same again. In customer
relationship management, for example, considerable effort is devoted to establishing
a stable identity for customers – sometimes against the wishes or interests of the
customers themselves. As a private customer, I don’t necessarily want a
supermarket to record and analyse details of my purchases, and I may only be
persuaded to grant access to my identity in return for a discount scheme
implemented using a so-called loyalty card. As a car driver, I may want to obtain
and compare several different quotes for car insurance – and I specifically don’t want
the insurance industry to recognize me as the same again. Meanwhile, the
insurance industry very much does want to recognize me as the same again,
because it sees the tactic of hidden identity as a cover for fraud.

Questions of identity are also critical for business performance measurement. For
example, if we want to measure the proportion of sales enquiries that are converted
into sales, we have know whether the phone call from Mrs Smith counts as a follow-
up to the phone call from Mr Smith, or whether it is an entirely separate enquiry. In
other words, what is the business identifier for the entity type SALES ENQUIRY.

Identity is therefore a very important business issue, and a key element of the
requirements for a business information system.

Information

When people are asked to provide a definition of “Information”, they often spout a
piece of communication theory by Shannon and Weaver that few people properly
understand. Or they say that information equals data plus meaning. Some
people even use both definitions in turn – although it’s not obvious how they can be
integrated.

In practice, though, people use the term “Information” in a way that barely
resembles the definitions they cite.

Information Notions

Copyright © 2001 Richard Veryard. All rights reserved. Page 12

Implicit Definition Implications

“A by-product of a
business
transaction.”

Each insurance policy has a different “customer”.

Each “customer” has a separate name and address.

These “customers” may coincide - one real person may appear many
times in our files.

Difficult to consolidate data across products to produce such a unified
view.

Some business strategies demand a “unified” view of “customer”.

Therefore this view of information is inadequate - typically inhibits
business strategy.

“A fact about a real-
world object.”

“Customers” in our database represent “real” people in the “real
world”.

Since there is only one “real” person, there should be only one
database record.

Similarly, each database record should represent a single entity or
object in the “real world”.

Our knowledge of the real world is typically incomplete and imperfect.

Customer identity may not be straightforward.

° married couples

° small businessman

° proxies & agents

“A difference that
makes a difference.”
(Bateson)

Databases and systems should support any distinctions that business
strategy demands.

Databases and systems should support any connections that
business strategy demands.

Business rules and regulations demand correctness and consistency.

The equation information equals data plus meaning remains important, but it is
not universally true, and needs to be demonstrated for particular circumstances.

If meaning is the result of an interpretation, then the process of interpretation
needs to be visible. If we accept Wittgenstein's slogan: meaning is use, then we
often want to think of information as data in the context of some human (or at least
conscious, intentional) use/purpose.

Inheritance

See Subtype.

Instance

A member of a type or class. Also called occurrence.

Interface

It is a common pattern of technical materials, to provide a definition of a notion
taken from a well-known dictionary, as if a technically adequate definition could be
produced by refinement from the everyday usage of the word. If you go to the
dictionary expecting to find a clear and simple definition of a complex notion, you

Information Notions

Copyright © 2001 Richard Veryard. All rights reserved. Page 13

will usually be disappointed. But if you go prepared to find several diverse
definitions, you will usually be rewarded.

The Oxford English Dictionary offers three different notions of interface. It is not
obvious at first reading whether these three notions can be combined into a single
complex notion, or whether it would even make sense to try.

• An interface may be a surface or boundary between two portions of matter – a
spatial separation.

• An interface may be a meeting point between two systems – a bundle of
interactions, liaison or dialogue.

• An interface may be a device connecting two or more other devices.

These three definitions represent three different perspectives on interfaces. Each of
these perspectives is useful.

Interference

A complex phenomenon that occurs when you try to put two or more items of
information together. This is one of the reasons why information doesn't obey simple
arithmetic. see also Management Interference

Like many other things, LIGHT has changed in our understanding, from being
particles to being waves to being something else.

This ‘progress’ can be regarded as an increase in complexity or an increase in
simplicity - or both.

Now perhaps it is the turn of INFORMATION to be rethought.

Recall the surprise when, in high-school physics, you put two pinholes in a card and
found out that this didn't always mean you got twice as much light through.

Information also suffers interference patterns, which have not (as far as I am aware)
been properly studied.

If I buy two newspapers, does that mean I get twice as much information? Of course
not. And if an organization receives two different messages on the same subject from
different sources, they may sometimes reinforce one another, sometimes cancel one
another out, among other possibilities.

Traditional notions of information (as particles of meaning) fail to account for these
and other important phenomena.

Involuted Relationships

A relationship associating occurrences of a single entity type with other occurrences
of the same entity type. Appears as a loop or dog’s ear on the ER diagram.

An involuted relationship can be read iteratively or recursively. Thus if you have the
manager of relationship linking employees, this implies a tree structure that can be
read upwards or downwards – to retrieve the manager of manager of and
manager of manager of manager of and so on. Reading the manager of
relationship downwards, we get the set of people managed by a given employee – and
then the set of people managed by them, and so on. The term recursive closure
denotes the set of occurrences that can be reached by reading the involuted
relationship any number of times.

Information Notions

Copyright © 2001 Richard Veryard. All rights reserved. Page 14

For this reason, involuted relationships are sometimes incorrectly called recursive
relationships. But recursion strictly refers to a style of processing, not to a data
structure that may support such processing. In any case, recursive processing can
be supported by more complex data structures, involving more than one entity type,
such as Bill of Materials.

Most involuted relationships, have a no-return rule – in other words, you can never
get back to the occurrence you started with. You cannot be your own ancestor.
However, this no-return rule is not always valid. Consider the relationship doctor
of. There is no reason to exclude the following loop: Dr Smith has Dr Patel as a
patient, Dr Patel has Dr Chan as a patient, and Dr Chan has Dr Smith as a patient.
Indeed, if we assume that everyone – including doctors – needs to be registered with
a doctor – then there must be at least one return loop somewhere.

Key

See Identifier

Leak, Leakage

The flow of information across controlled and supposedly secure boundaries -
usually from protected to unprotected, or from private to public.

Logical Model

A model supposed to represent the externally accessible structure of an interface or
device.

Message

A package of data passed from one application to another, usually asynchronously.

Some communication technologies describe themselves message-oriented – in other
words, they specialize in passing messages between applications.

Meta Data

Metadata are data about data – or information about information – describing the
structure, physical distribution or logical ownership, and other such characteristics.

Meta Model

Strictly speaking, a metamodel is a model that expresses the syntax or semantics of
a modelling language. Provides a formal structural description of a modelling tool or
repository.

In normal parlance, the term metamodel is also used to refer to a structured
collection of metadata.

Model

A model is a representation of the structure of information within an organization.
It may represent the present structure of business and computer systems – actual or

Information Notions

Copyright © 2001 Richard Veryard. All rights reserved. Page 15

imagined – or a desired future structure. A description of an area as a set of
constructs, which are named, defined and interrelated in a standard way.

A model has a scope, whose exact boundaries are often difficult to establish. It also
has a perspective and purpose.

Modelling

The creation of a model – often called analysis. This activity is often seen as a
process of discovery of pre-existing facts, but it is more useful to see it as a process
of negotiation – developing a consensus between different stakeholders in the area.
It is therefore important to be aware of the perspective of the model – i.e. which
stakeholders are included, in which roles.

Negation

A complex phenomenon that occurs when you try to subtract (or erase) information.
This is another one of the reasons why information doesn't obey simple arithmetic.

Stubborn information - refuses to be erased, resists eradication. (Try to get rid of a
bad credit report, a hostile press statement, or even a completely groundless
rumour.)

Information goes underground - it's still there somewhere, even though it's not
visible any more - and may come back to haunt you. (Something may seem to be
forgotten, but it suddenly pops up again - and always at the most inconvenient
time.)

Negative Pattern

In a design inspection, the reviewers are looking for opportunities to improve an
artefact – such as a model. This is essentially a pattern-matching exercise, in which
each reviewer searches for familiar ways in which the artefact may be flawed –
yielding error, inefficiency, inflexibility or some other negative quality. These
negative patterns can be characterized not only by a familiar structure, but by a
common source or motivation – the designer was trying to do something else, but it
turned out like this. These are sometimes also called AntiPatterns or Bad Smells.

Normalization

A procedure invented by Ed Codd, supposed to remove various forms of inefficiency,
inflexibility and redundancy from a relational data model. After normalization, the
model should be in some normal form – typically third normal form – where all the
data in each row is dependent on “The Key, The Whole Key and Nothing But the Key,
so help me Codd.”

Notation

A formal style in which information models may be presented. Popular notations for
data models include ER models and IDEF1X models. The class model notation in
UML is roughly equivalent.

Although some notations are more expressive or elegant than others, the choice of
notation is largely a matter of taste.

Information Notions

Copyright © 2001 Richard Veryard. All rights reserved. Page 16

Object

Leibniz called them monads, and thought of them as two-storey houses. Downstairs
is the public area, where you entertain guests. Upstairs is the private area, reserved
for sleep, sex, and other spiritual matters.

The OO view of object is remarkably similar. They have a public reception area,
known as the interface, and a private area, known as the internals. The world
consists of interactions between these objects.

Occurrence

A member of a type or class. Also called instance.

Ontology

A fancy word for what there is – what objects exist. A theory – either explicit or
implicit – about what objects exist.

The term has become fashionable of late, because of the growing recognition that
different people, different organizations possess different ontologies. Effective
communication therefore requires either establishing shared ontologies or
establishing reliable translations between different ontologies.

Establishing the ontology of a strange tribe – such as “users” or “customers” – is
fraught with error, misunderstanding and misinterpretation. The American
philosopher WVO Quine argued that we can never be entirely sure we’ve fully
grasped someone else’s ontology – and that translation can therefore never be
proved correct. However, with considerable effort, we can often get close enough for
most practical purposes.

Palimpsest

A memory device which retains traces of previous data or versions. For example,
magnetic media that allow erased data to be restored (using special techniques),
humans that retain unconscious memories or habits from the past, organizations
that preserve traces of previous structures or processes. Detectives and
archaeologists can reconstruct the past, can follow inexpertly doctored audit trails,
can deconstruct legacy.

Partition

See Subtype.

Pattern

A popular misunderstanding about patterns is that they are merely abstract
components – prefabricated chunks of analysis or design that can be instantly
assembled into a solution – the engineering equivalent of convenience foods.

Anyone who reads Christopher Alexander’s original work on patterns cannot fail to
sense an entirely different passion and purpose for patterns – the need for quality in
the finished product – a quality that Alexander calls The Quality Without a Name.

Information Notions

Copyright © 2001 Richard Veryard. All rights reserved. Page 17

On this view, patterns are not intended to make the engineering process faster or
more efficient – or even more reliable. The purpose of patterns is to impart
character to an artefact. Pattern languages are intended to help engineers
communicate an awareness of the character and quality of design – with one
another and with their clients.

Patterns are often described as solutions in context. This description can be traced
back to Christopher Alexander, sometimes seen as the father of patterns, who is
very keen to emphasize the grounded, context-dependent nature of true patterns.

Within the software engineering world, in contrast, there has been a strong
emphasis on reuse. In order to reuse something, it has to be taken away from its
original context – at least to some extent – and generalized so that it can be plugged
into a range of contexts. This means that a pattern has to be partially abstracted
from its context.

Good pattern work has always maintained tension between two opposite positions –
the immanent and the transcendental – between solutions that are grounded in the
specifics of a given situation, and solutions that are timeless and universal.
Alexander expresses this tension by insisting that you can use a pattern a million
times over, without ever doing it the same way twice. In a manner of speaking, this
is repetition without repetition.

A pattern has the structure of a judgement – it involves an appreciation of a
situation, leading to an intelligent response or action. This leads me to define a
pattern as a judgement partially abstracted from its context.

See also Negative Pattern.

Persistence

The continued existence of some information after an activity has finished.

Perspective

The perspective of a model indicates one or more roles whose views are represented
or incorporated in the model.

Physical Model

A model supposed to represent the internal structure of an interface or device.
There are various reasons why this may differ from the logical model

• Quality of service, including performance and security requirements.

• Current technical features of the platform.

• Legacy – in other words, traces of past complications.

Primary Key

See Identifier

Information Notions

Copyright © 2001 Richard Veryard. All rights reserved. Page 18

Punctuation

Punctuation refers to the way that a complex communication process – perhaps a
complex negotiation or exchange of information – is broken down into discrete
messages or speech acts.

Where feedback loops or learning loops are involved, punctuation also refers to the
start point – where to break into the loop.

Punctuation is often subjective or arbitrary. Different analysts may punctuate a
communication process in radically different ways. This critically affects the
perceived structure of the situation. Is A helping B, or is B coaching A? Is C
commanding D, or is D controlling C? Who is controlling whom, who is proactive
and who reactive?

Recursion

See Involuted Relationship

Redundancy

In the context of information modelling, redundancy means that a fact is
represented in the model twice. Since facts are represented by objects, or
combinations of objects, this is equivalent to saying that one object in the model can
be derived from other objects in the model.3

There are two reasons for removing redundancy: to make the model simpler (and
thus easier to understand and use), and to make the ensuing system more efficient.
During analysis, we should only remove redundant objects for the first of these two
reasons, since the second reason is a matter for systems design, but we need to
identify all aspects of redundancy at this stage.

Storing a fact more than once opens the door to inconsistency, if the two versions of
the same fact are incompatible. Thus non-redundancy makes it easier to ensure
consistency.

However, some situations demand a higher level of control, where consistency needs
to be actively checked, rather than merely automatically ensured. Two or more
versions of a fact are deliberately captured, so that they may be compared, and
discrepancies highlighted. The classic example of this is double-entry book-keeping,
which indicates its redundancy by its very name.

Reification

It would be pleasant to imagine that somewhere in the world – perhaps in the East,
wherever that is – people are more focused on relationships than things. In the
West, we seem to be obsessed by things.

Materialism is not just a matter of wanting to possess things, although that’s
certainly part of it. It’s a matter of perceiving the world as if it were composed of
things. Children are taught this from an early age: most of the available books for
toddlers have one word on each page, and the word is a noun: ball, bear, banana.

3 Devotees of the relational model often use a different definition of redundancy, tied to the specifics of nth

normal form. Note that some intelligent translation of such concepts is required between the relational model and
the entity-relationship model.

Information Notions

Copyright © 2001 Richard Veryard. All rights reserved. Page 19

 Do you think that anyone has made a conscious decision that toddlers should start their
acquisition of language by learning the names of things, or is it just something that
happens by default? What is the alternative?

If you really make an effort, you can find books showing activities (bathing, building,
blushing) or spatial relationships (inside, outside, upside down) or even feelings
(happy, sad, tired). But it’s still difficult for us adults to escape from the materialist
mindset, or to avoid transmitting it to the next generation. After all, materialism is
embedded in the structure of the child’s book (one page, one picture, one word),
together with the implicit notion that the child’s task is to accumulate vocabulary,
one word at a time.

That’s why it’s so difficult to see the world other than as objects, and why the object-
oriented paradigm is so attractive, especially when there are excellent techniques for
creating objects out of processes, out of relationships, or perhaps even out of
nothing. Philosophers and software engineers have a word for this; they call it
reification.

When relationships are regarded as things, this usually focuses attention either on
the bridging mechanism, or on a static snapshot of the relationship, as for example
represented by a legal contract. When processes or services are regarded as things,
this usually focuses attention on the deliverable or end-result, as shown in Table 1.

Planning as Process

Making scheduling and
resourcing decisions in response
to changing events

→→
Plan as Record

A consistent set of schedule
items and resource assignments.

Negotiation as Process

Ongoing negotiation and
development of the terms of
business.

→→
Contract as Record

A legally binding description of
the relationship between two
companies at a particular time.

Information as Process

Selection, interpretation and
dissemination of relevant
business data.

→→
Information as Document

Formal results of the selection
and interpretation of data.

Table 1 Regarding processes as things

The object-oriented way of describing components is extremely useful, especially for
designing and managing components. It is also useful for describing the behaviour
of components, and their performance in complex environments. But there are
limitations to an object-oriented view of systems and components.

Relational Model

A view of data structure as a set of tables, with rows and columns. Each row
represents an occurrence of the underlying entity type, while each column
represents an attribute.

This view corresponds fairly closely to the logical structure of a relational database.

Relationships between entity types are represented in the relational model by cross-
reference attributes, known as Foreign Keys.

Information Notions

Copyright © 2001 Richard Veryard. All rights reserved. Page 20

Relationship

A relationship is a pattern of binary association between entities – it associates pairs
of entities together. Usually the entities belong to two different entity types. Some
relationships, however, associate pairs of entities belonging to the same entity type:
these are known as involuted relationships.

Relationship Pairing

A relationship pairing is an instance of a relationship. It associates one entity
occurrence with another entity occurrence, according to a specific relationship.

Repository

A store for models and related information. May be provided as part of a modelling
tool, or may be a separate artefact. Sometimes known as a data dictionary or
encyclopedia.

Science

People frequently complain that modelling “is not scientific”. So what is science
anyway?

Science involves making and testing hypotheses. A model is a hypothesis, a theory –
which is tested in various ways – by expert examination, by test cases (including
monsters). Science operates by trial and error.

Screen

The computer offers information as services through a screen. The screen is both
literal and metaphorical. It is a surface on which the data are presented, and also a
filter that controls what the user sees. To screen something implies both show and
hide.

Secondary Key

See Identifier

Semantics

Strictly speaking, the semantics of a model (or modelling language) denotes a
relationship between the model and something else, which gives the model its
meaning. Semantics is therefore the study of meaning.

However, many people in IS use the term semantics to refer to the formal structural
constraints of a modelling language. This should more accurately be called Syntax.

Specific Feature

See Classification

Information Notions

Copyright © 2001 Richard Veryard. All rights reserved. Page 21

Subject Area

A broad field of information, usually involving many interconnected entity types.

Subtype

An identifiable subset of a type with special and relevant attributes, relationships,
states or responsibilities.

The subtype usually inherits all the properties of the supertype, including the
identity rule, and has some additional distinguishing properties.

A type may be partitioned into several non-overlapping subtypes, using a
partitioning rule, which allows us to determine for each occurrence which subtype, if
any, it belongs to.

Synonym

A synonym is an alternative name for the same thing. Thus CUSTOMER and CLIENT
may be synonyms, if they mean exactly the same thing.

The trouble is that near synonyms are more common than exact synonyms – and
you can get into trouble if you incorrectly assume that the synonymy is exact. For
example, SUPPLIER is not an exact equivalent of CREDITOR if the latter includes the
taxman and the former does not.

Exact synonymy means not only that the two terms have exactly the same set of
occurrences today, but that they always will have. An infant school may assume
that PRIMARY CARER is equivalent to MOTHER because at present all the primary carers
happen to be mothers.

Syntax

The formal structure (or “grammar”) of a model or modelling language.

Third Normal Form

see Normalization.

Two-Faced

A two-faced entity type is one that serves more than one purpose. This is found
particularly with abstract entity types such as MARKET or ACCOUNT. The principle of
data sharing seems to urge that each entity type serve as many purposes as
possible, but there are situations where a single term hides a multiplicity of
purposes, and must be pulled apart.

A good example of a two-faced entity type occurring in many models is PRODUCT.
This has two aspects: what is bought by the customer, and what is delivered to the
customer. Superficially these appear equivalent, but they often turn out not to be.
Consider tinned peaches. The consumer selects a brand, and perhaps doesn’t care
where the peaches are grown. Indeed, the same brand of tinned peaches may
contain Californian peaches at one time of year, and South African peaches at
another time of year. Furthermore, peaches from the same source may be tinned
under several different brand names (including supermarkets’ own brand labels).

Information Notions

Copyright © 2001 Richard Veryard. All rights reserved. Page 22

Thus we have many facts about a tin of peaches, including its brand name and retail
price, as well as the source of the peaches inside. Confusion arises if we try to model
all these facts in a single entity type called PRODUCT. Instead, it is usually a good
idea to distinguish two entity types: PRODUCT and BRAND, with a many-to-many
relationship between them.

Some companies are accustomed to making a conceptual and management
separation between PRODUCT and BRAND. The same goods and services are presented
to the customer under multiple brand identities. For example, a joint venture
between a supermarket and a bank may result in the bank’s financial products
being sold to customers under the supermarket’s brand name.

Or conversely, the same brand identity may be used for more than one product. For
example, in the oil industry, the same brand name may be used for a range of
slightly different products. The exact petrochemical mixture pumped into cars varies
according to the time of year, the state of the oil market, and numerous other
factors. Several other industries, including brewing, have different recipes for
summer and winter. The customer is not expected to notice the difference.

But some companies have traditionally maintained a one-to-one correspondence
between PRODUCT and BRAND. This can turn out to be a significant constraint,
especially in IT systems. For example, a financial services company wanted to
license its products to a sister company within the same conglomerate. In other
words, the sister company would market the products to its own customer base
under its own brand name. But the IT systems supporting the products couldn’t
accommodate this flexibility. Among other things, the billing systems were hard-
coded to print a specific brand name at the top of each communication to the
customer.

And the constraints were not just from the IT systems. For example, the customer
support staff answering the phones didn’t know what brand the customer had
bought the product under.

From a business perspective, there were three possible outcomes of this lack of
articulation:

1. Confusion and dilution of brand identity (loss of clarity).

2. Loss of brand identity – anonymous and unbranded information & services (loss
of engagement).

3. Separate capability for each brand – thus restoring one-to-one relationship
between BRAND and PRODUCT (loss of intelligence).

Type

A specification or rule, to which any number of objects may conform. A type may be
empty or infinite.

A given object can conform to arbitrarily many specifications – and can therefore
belong to as many different types as you choose to define.

A type may be implemented as a class in OO, or as a logical entity type.

