
Author: Richard Veryard
Version: August 9th 1999

richard@veryard.com
http://www.veryard.com

For more information about SCIPIO, please
contact the SCIPIO Consortium.

info@scipio.org
http://www.scipio.org

© Copyright 1998 Richard Veryard Page 1

CASE STUDY
Liam O’Croder
Mail Order Co

SCIPIO Case Study: Liam O’Croder

© Copyright 1998 Richard Veryard Page 2

PrefacePreface

Purpose of documentPurpose of document

Illustrates SCIPIO as a method for specifying the requirements for software component
development, in a context of business process improvement.

Ø The case study is intended to exercise the essential principles of SCIPIO.

Ø The case study is intended to illustrate several important techniques of SCIPIO.

Ø The case study illustrates how the main diagrams are used.

Questions and exercisesQuestions and exercises

This case study has been developed for training purposes. The reader is invited to engage
actively with the case study. To this end, questions and exercises are interspersed with the
text.

QQQ Do you want to enrich your understanding of the SCIPIO method by answering
the questions as you along?

QQQ Do you want to test your understanding of the SCIPIO method by answering all
the questions after you’ve read the whole case study?

AcknowledgementsAcknowledgements

This example is adapted from a recent essay on IT trends. Deborah K. Lewis & Alexander
Morrow, ‘The Prairie School: The future of workgroup computing’, in Derek Leebaert (ed)
The Future of Software (MIT Press, 1995)

Thanks to Angela Hakim, David Iggulden, Ian Macdonald and Michael Mills, for their critical
comments.

SCIPIO Case Study: Liam O’Croder

© Copyright 1998 Richard Veryard Page 3

Business Process IntroductionBusiness Process Introduction

Let’s start with a business process loop that appears to be complete.Let’s start with a business process loop that appears to be complete.

Customer Sales

Product Design

Product
Catalogue

Sales
Results

Imagine a mail-order company, whose customers place orders by phone.

The diagram shows two main subprocesses:

Ø Customer Sales takes and fulfils orders from customers against a pre-existing catalogue.

Ø Product Design periodically creates new versions of the catalogue, and is influenced by
historical sales data (among other things).

Let’s ignore other processes, such as production and delivery, for the time being.

SCIPIO Case Study: Liam O’Croder

© Copyright 1998 Richard Veryard Page 4

But when we zoom into Customer Sales, we find that there’s a hole in theBut when we zoom into Customer Sales, we find that there’s a hole in the
process.process.

Customer Sales

Product Design

Product
Catalogue

Sales
Results

Receive
Customer
Request

Match
Against

Catalogue

Debit
Customer
Account

Ship
Goods to
Customer

FAIL

One problem with this process is that the sales results are asymmetrical. Successful sales are
recorded, but unsuccessful ones are not. This means that the information fed back to the
product design process is one-sided. The product designers discover the actual demand for the
things that ARE in the catalogue, but do not discover the demand for anything that is NOT in
the catalogue. They also don’t find out about customers who go away when they are told the
price or delivery date.

If the requested item is not in the catalogue, the customer goes away.If the requested item is not in the catalogue, the customer goes away.

Customer Polite but unhelpful
Sales Clerk

request

reply

“No. Thank
you for
calling.

Goodbye.”

“Hello, my sister
really likes your

clothing, and she’s
just fallen pregnant.
Do you do maternity

clothes?”

And most importantly, if the requested item is not in the catalogue, that’s the end of the
conversation with the customer.

SCIPIO Case Study: Liam O’Croder

© Copyright 1998 Richard Veryard Page 5

We can plug this hole by creating a new link between the two mainWe can plug this hole by creating a new link between the two main
subprocesses.subprocesses.

Customer Sales

Product Design

Product
Catalogue

Sales
Results

Receive
Customer
Request

Match
Against

Catalogue

Debit
Customer
Account

Ship
Goods to
Customer

New Product
Requirement

FAIL

In this example, we are going to plug in a new business component, creating a new link
between Customer Sales and Product Design. This increases the level of process
integration. (This is one of the three main types of process improvement we have identified,
the other two being process simplification and radical process transformation.)

To implement this business component, we shall have to install some additional software
components, as well as altering the working practices of both the sales clerks and the product
designers.

A traditional solution might be to install a component within the Customer Sales area to
collect New Product Requirements, which the Product Designers can consider when issuing
the next version of the Product Catalogue. (This is the kind of solution a traditional data-
oriented methodology might have produced.

When I moved house recently, I wanted some telephone lines installed in the new house. I
had some special requirements, which the telecommunications operator couldn’t satisfy. It
took me some time to explain to the sales clerk exactly what I wanted. When he finally
understood my request, he admitted that it was a reasonable one, and promised to pass it onto
the marketing department. Did this mean I could have what I wanted after all? Not this time,
but maybe it will be possible by the next time I move house.

In other words, this solution might yield future (hypothetical) benefits for future (hypothetical)
customers, but there is no incentive for the current (disappointed) customer to stay on the line
and provide more detailed information about his requirement. In short, the solution doesn't
enhance the relationship with the actual customer.

In this case study, we are going to look at a more ambitious solution, which provides a much
faster response to the customer’s requirements.

With the With the cooperation of the design department, perhaps we could sell thingscooperation of the design department, perhaps we could sell things
that are not in the catalogue.that are not in the catalogue.

If the sales clerk is not limited to selling things that are in the current version of the catalogue,
then we may have a way to continue the conversation with the customer.

SCIPIO Case Study: Liam O’Croder

© Copyright 1998 Richard Veryard Page 6

This reflects one of the key principles of SCIPIO, which is that we want to focus on improving
business relationships - in this case with the customer.

Helpful
Sales Clerk

Customer

exchange
continues

request

reply

“Hello, my sister
really likes your

clothing, and
she’s just fallen

pregnant. Do you
do maternity

clothes?” “There’s nothing in our
catalogue at the moment,
but if you’ll let me take a
few details, I’ll get one of
our clothing designers to
contact you directly and

discuss your sister’s
requirements.”

This example may seem futuristic and implausible to many readers. But there is a current
trend in many industries to find ways of adapting products and services to the needs of
individual customers, without losing the economies of scale. This is known as mass
customization1.

QQQ Have you experienced anything similar? Can you see how this kind of added
responsiveness could be relevant to your organization?

QQQ What are the practical limits to personalized products and services?

There are other holes in this process.There are other holes in this process.

The reader might wish to consider these two processes in a wider context, and draw a larger
diagram to show additional interfacing processes.

QQQ What other processes would you expect to interface with these two processes?
What processes might trigger relevant events?

QQQ What are the possible sources of relevant information? What other inputs might
be needed to perform these processes effectively? What processes might
generate these inputs?

1 For more information, see the Managing Change website at
http://www.managingchange.com/

SCIPIO Case Study: Liam O’Croder

© Copyright 1998 Richard Veryard Page 7

The purpose of this exercise is to give the reader an opportunity to explore this diagram and
its use, by extending its scope. However, the case study itself will remain within the original
scope, and we shall not develop these extensions further.

However, it should be noted that there are many possible inputs and triggers to Product
Design. Rather than analysing each one separately, it might be worth developing a standard
interface into Product Design, so that any new source of marketing information could be
plugged in without fuss.

QQQ What would you need to know to design this interface? Sketch a design, making
some reasonable assumptions.

SCIPIO Case Study: Liam O’Croder

© Copyright 1998 Richard Veryard Page 8

Modelling Business RelationshipsModelling Business Relationships

We shall need to explore this example from several perspectives. For the purposes of this case
study, we shall start by looking at the business relationships, both external and internal. We
view a business system as a collaboration between several responsible agents.

In SCIPIO, we use these models to understand how ownership and responsibility are
shared and distributed between many agents to perform one or more business processes.

In this case study, we are going to make changes to the business system at this level. In other
projects, there may be no current desire or mandate to change the business system, but the
computer system should still be designed with an understanding of the business system context.
Among other benefits, this reduces the risk that future business changes may require extensive
and expensive changes to the computer systems.

The customer, the sales clerk and the designer collaborate to captureThe customer, the sales clerk and the designer collaborate to capture
requirements.requirements.

Sales Clerk

Designer Customer

Requirements Capture

To plug the hole, we think in terms of a collaboration (or joint action) between the designer,
the customer and the sales clerk.

There has always been such a collaboration, but the participation of the three collaborators
has been rather remote. What we seek to do is to make this collaboration closer.

Thus this model is an invariant model - it shows something that has always been valid and
will remain valid. We need to explore the differences between the present (remote) way this
collaboration manifests itself and the desired (closer) manifestation. This is shown next.

The sales clerk and the frustrated customer become participants in ProductThe sales clerk and the frustrated customer become participants in Product
Design.Design.

To understand the nature of the change in the business relationships, we draw two models: an
As-Is model of the present situation, and a To-Be model of a possible future situation.

SCIPIO Case Study: Liam O’Croder

© Copyright 1998 Richard Veryard Page 9

AS IS

Sales Clerk

Customer

Designer

Customer Sales

Product Design

TO BE

Customer Sales

Product Design

Sales Clerk

Customer

Designer

We consider the complications that arise when the two processes belong toWe consider the complications that arise when the two processes belong to
different organizations.different organizations.

Modelling the business relationships also allows us to look at the issues of ownership and
obligation. For example, we might consider the complications that arise when the customer
sales process and the product design process ‘belong’ to separate organizations.

Who would own the design that emerged from this collaboration? What kind of contractual
agreement would be required to formalize the collaboration between the two organizations?
How would the collaboration be managed, perhaps jointly by two separate management
systems?

QQQ Who owns the design that emerges from this collaboration?

QQQ What kind of contractual agreement is required to formalize the collaboration
between the two organizations?

QQQ How is the collaboration to be managed?

Assuming these contractual and management issues are resolved, we then need to look at how
this improved collaboration would be implemented. To do this, we look at a different view of
the collaboration, showing the transactions or exchanges that are required to make the
collaboration work.

SCIPIO Case Study: Liam O’Croder

© Copyright 1998 Richard Veryard Page 10

Modelling Transactions and ExchangesModelling Transactions and Exchanges

Now we are going to add some detail to the business relationship models, to show the
transactions and exchanges that form each relationship.

We need to consider the sharing and distribution of authority and control across one or
more business processes. Who is talking to whom about what? We also consider the
distribution and exchange of knowledge and information relevant to the business process.

We focus our analysis on improving interactions.We focus our analysis on improving interactions.

Interactions at all levels can be improved. This includes interactions internal to a system, as
well as interactions between the system and its environment.

Usually we want to improve interactions by reducing interaction distances - making
interactions easier, quicker, cheaper and more reliable. However, in some cases we want to
maintain or increase interaction distance - making certain classes of interaction more difficult,
for reasons of security or autonomy. This involves a device known variously as a Chinese
Wall (at business system level) or Firewall (at software level).

The sales clerk who can interact with Product Design can interact better withThe sales clerk who can interact with Product Design can interact better with
the customer.the customer.

The transaction view concentrates on the need for an additional exchange - between the
sales clerk and the designer. It shows how providing the sales clerk with access to this
exchange effects a transition in the sales clerk herself (from unhelpful to helpful), at least as
perceived by the customer.

AS IS

Polite but Unhelpful
Sales Clerk

Customer

Customer Sales

Exchange

I’m sorry, it’s not
in the catalogue.

SCIPIO Case Study: Liam O’Croder

© Copyright 1998 Richard Veryard Page 11

TO BE

Product Design

Helpful
Sales Clerk

Customer Designer

Customer Sales

Exchange Exchange

We could easily
make one of those,
if that’s what the
customer wants.

This shows a single exchange between the customer and the sales clerk, which has become
more complex. An alternative way of showing the ‘TO BE’ situation is shown next.

After looking at this alternative, we’ll then look at what’s needed to implement the exchange
between the sales clerk and the designer.

The Sales Clerk’s interaction with the Product Designer may be regarded asThe Sales Clerk’s interaction with the Product Designer may be regarded as
exceptional.exceptional.

An alternative way of showing the ‘TO BE’ situation would be to have the primary exchange
(i.e. order-taking) invoking a supplementary exchange (i.e. requirements-taking) triggered by
failure of the primary exchange. We leave it as an exercise for the reader to convince herself
that this is logically equivalent.

Sales Clerk

Customer Sales

Product Design

Customer

DesignerExceptional
Exchange

Exchange
sometimes

triggers

Normal
Exchange

Now we’ll come on to look at what’s needed to implement the exchange between the sales
clerk and the designer.

SCIPIO Case Study: Liam O’Croder

© Copyright 1998 Richard Veryard Page 12

We can consider other ways to enable the sales clerk to be more helpful.We can consider other ways to enable the sales clerk to be more helpful.

???

Helpful
Sales Clerk

Customer

Customer Sales

Exchange

Product Design

Designer

Exc
ha

ng
e

Exchange

QQQ What else (other people, other
objects) could we give the sales
clerk access to?

QQQ What additional software
components would create this
access?

Let’s note that providing the sales clerk with access to an exchange with the designer isn’t the
only way of effecting an improvement. Another possibility is to increase the sales clerk’s power
to analyse the customer’s requirement in more detail and suggest product substitutions.

Each exchange is defined in terms of its purpose and outcome.Each exchange is defined in terms of its purpose and outcome.

We need to describe the exchanges that currently exist (As-Is) and specify the exchanges
that are required (To-Be). We define the logic of each exchange in terms of its preconditions
and postconditions, as well as any invariant conditions. (The invariant specifies what
conditions the exchange must preserve, or the things it must not do.)

Customer Sales Clerk

Exchange

Sales Clerk Designer

Exchange

Name Create sales order to match
customer requirement.

Name Determine response to customer
requirement.

Logic POST: sales order created OR
customer goes away

Logic PRE: customer requirement not in
catalogue.

POST: special offer made OR
special offer refused.

QQQ Is there anything we need to specify as invariant conditions for these exchanges?

In the As-Is situation, there will often be a significant gap between intention and reality.
However, this case study does not explore this difficulty.

SCIPIO Case Study: Liam O’Croder

© Copyright 1998 Richard Veryard Page 13

Each exchange is designed as a system of messages.Each exchange is designed as a system of messages.

For a specific scenario, an exchange can be decomposed into a specific sequence of messages.

Customer Sales Clerk Designer

request

offer

acceptance

request

can this customer have
a size 18 in dark green?

offer

yes, but it will cost £5
more than the size 16, to

pay for the extra material

QQQ Is anything missing from the scenario shown?

QQQ What information does the customer need to make a decision? Where does this
information come from?

Additional messages are required to support other scenarios.Additional messages are required to support other scenarios.

There are usually many different message diagrams for each exchange diagram, with different
sequences of messages, each one representing a different scenario.

The above message diagram reflects the scenario where the designer says “Yes but” and the
Customer says “Yes please”.

QQQ What other scenarios are there to consider?

For exchanges representing complex negotiations, there may be an indeterminate number of
messages going backwards and forwards between the negotiating parties, before an agreement
is reached. For such exchanges, the message diagram will need to be as complex as the
negotiations themselves. The exchange diagram, however, shows such negotiations as a single
exchange.

The interaction continues.The interaction continues.

Now we explore the options for assigning responsibility.

The production and delivery operation must get some specification of what the customer has
ordered.

SCIPIO Case Study: Liam O’Croder

© Copyright 1998 Richard Veryard Page 14

Sales Clerk DesignerCustomer Production
& Delivery

earliest
delivery

date?

??
??

??

request

offer

acceptance

request

offer

Option 1: the sales clerk receives the
specification from the designer and
sends it to the production & delivery
operation when the customer
accepts the offer.

Option 2: the designer makes the
specification available to the
production & delivery operation.
The sales clerk merely receives and
passes a reference to this
specification.

Option 3: when the customer
accepts the offer, the sales clerk
informs the designer, who passes the
specification onto the production &
delivery operation.

Which of these options do you think is more robust with respect to a variety of scenarios?
What object identifies the transaction in each case?

Where does the responsibility lie for identifying the earliest delivery date? (We shall return to
this question later.)

QQQ How does interaction
continue?

QQQ Does designer get feedback
from customer?

QQQ Who specifies delivery?

QQQ Who specifies delivery date?

The workflow includes human roles and software components.The workflow includes human roles and software components.

Agree next
action

commitment to respond

Check request
against catalogue

??

DesignerCustomer

request

Plan
response

Design
Proxy

new customer requirement

confirmation

Catalogue

Lookup
item

Sales
Application

Enter
order
details

Sales
Clerk

Complete
order

Take more
details

The new operations are added, and the whole thing is strung together using workflow
management software or appropriate middleware.

SCIPIO Case Study: Liam O’Croder

© Copyright 1998 Richard Veryard Page 15

In our solution, the Design Proxy handles the workflow.

The new workflow is negotiated between the participants.The new workflow is negotiated between the participants.

So far, we have assumed that the product design process will be able to make use of the new
information collected by the sales clerk, and will be able to provide a prompt response.

In this example, we assume that a representative of the design organization has the authority
to agree this, and commit to the new exchange.

Thanks to component-based development, we can install the new connection between the
sales process and the design process without necessarily concerning ourselves with the internals
of the design process.

SCIPIO Case Study: Liam O’Croder

© Copyright 1998 Richard Veryard Page 16

Modelling Behaviour and ServicesModelling Behaviour and Services

We start to consider the agents as objects.We start to consider the agents as objects.

Each human role, each software artefact, each lump of activity, can be described as an object.
We use object modelling techniques to describe the behaviour of an object as a set of
operations performed by a class. We now view the whole system as a collection of
behaviours.

To give meaning to the operations of an object, we need to understand the vocabulary in
which the operations are expressed. Each object knows about some other objects, and may
make reference to them. This vocabulary is modelled as a class diagram, for each object.

An interface represents a service provided by some objects to some other objects. The
interface of an object consists of a set of operations, together with that part of the vocabulary
that is referenced in these operations. For many purposes, we wish to specify the external
behaviour of an object, without specifying its internal model.

In many object modelling methods, the behaviour of a whole system or subsystem is described
as a set of use cases. This defines the interface between the system and a human role
external to the system. (This human role is usually known as The User.)

We define the behaviour of each object in response to each message.We define the behaviour of each object in response to each message.

Sales ClerkCustomer Designer

request

offer

acceptance

request

offer

• Handle offer

Customer

• Handle customer
request

Designer• Handle customer
request

• Handle offer from
designer

• Handle customer
acceptance

Sales Clerk

At this point in the case study, we describe the external behaviour of the sales clerk, as
supported by one or more software systems. At this point, we do not distinguish the behaviour
of the clerk from the behaviour of the software supporting the sales clerk - this distinction
comes later.

SCIPIO Case Study: Liam O’Croder

© Copyright 1998 Richard Veryard Page 17

QQQ Define what the sales clerk does:

- when receiving a request from the customer;

- when receiving an offer from the designer;

- when receiving an acceptance from the customer.

QQQ Define what the designer does.

QQQ Define what the customer does.

We define the rules We define the rules for each behaviour.for each behaviour.

Item is in
catalogue

IF
O

R

A
N

D

Customer
gives item
description

Sales clerk finds
matching item in

catalog

A
N

D

Customer gives
item number

Sales clerk
confirms item

description

To define each operation declaratively, we define its preconditions and postconditions. These
can be expressed as formulas in predicate logic, but we prefer to represent them as hierarchical
rule diagrams.

SCIPIO Case Study: Liam O’Croder

© Copyright 1998 Richard Veryard Page 18

Even small details are analysed in the same way.Even small details are analysed in the same way.

Sales Clerk

Customer Production
& Delivery

Delivery date negotiation

Resource
Manager

Designer

You can have this one
sooner

—but only if we can
delay something else

—or you give us more
resources.

Note that the Resource Manager will only be included in this collaboration under certain
circumstances, viz. if the possible outcomes (postconditions) of the exchange may include
alterations to resource allocations.

QQQ What are the options for designing the exchange of messages?

QQQ What are the options for designing software components?

Exchanges may be implemented through proxies.Exchanges may be implemented through proxies.

Requirements Capture

Designer

Designer
Proxy

Sales Clerk

Customer
Proxy

Customer

One way of looking at the role of the sales clerk is that he is merely a two-way proxy. The
designer talks to the sales clerk as a proxy for the customer, and the customer talks to the sales
clerk as a proxy for the designer.

SCIPIO Case Study: Liam O’Croder

© Copyright 1998 Richard Veryard Page 19

In some telephone sales situations, a computer may stand proxy for a human. For example, in
some cities it is possible to order cinema tickets over the phone without talking to a real person
at all.

Proxies may be human or mechanical. Indeed, in the Behaviour View we do not need to
specify whether behaviours shall be human or mechanical - this is determined in the Design
View.

An earlier version of this material provoked a comment about the way that I’ve named the
components - particularly the Designer Proxy. Software engineers have traditionally been
taught to name modules or components in terms of their functions. Thus, instead of ‘Designer
Proxy’, they would probably have called it ‘Requirements Capture’.

If you were looking at the component purely from the perspective of the sales clerk, this would
seem the natural choice. But I prefer to name components in terms of the exchanges they
implement. This focuses attention on the other end of the exchange: in this case, the product
designer.

However, for those components where I haven’t analysed the exchange, I’ve used traditional
functional names.

A proxy has special advantages as an exchange partnerA proxy has special advantages as an exchange partner

Location Accessible from anywhere you need it.

Timing Always available when you need it.

Ease of use Can use your vocabulary.

Reliability Always provides a good response.

The proxy stands for someone or something else. It should provide better availability - in
terms of location, timing, ease of use, and reliability. It may also improve maintainability:
since only the proxy itself needs to know the exact relationship with the people or things it is
standing for, only the proxy needs to be changed if this relationship changes.

So what does this mean when we come to designing the behaviour of the proxy?

QQQ What behaviours does a proxy need to have in order to provide these
advantages?

SCIPIO Case Study: Liam O’Croder

© Copyright 1998 Richard Veryard Page 20

The sales clerk interacts with Product Design via a software component: theThe sales clerk interacts with Product Design via a software component: the
Designer Proxy.Designer Proxy.

Product Design

Designer

Customer

Sales Order Processing Order Fulfilment

Designer Proxy

Sales Clerk Order Capture

This view shows how the required behaviour of sales order processing is divided between
one human role (in this case, although in other cases there may be multiple human roles) and
two software components. When the analysis is complete, each box will contain a detailed
specification of the required behaviour of the given role or component.

What is achieved by having the sales clerk talk to a designer proxy (implemented in software)
rather than directly to the designer?

Firstly, the designer proxy will have a much higher level of availability than the real designer.
The sales clerk can nearly always access the designer proxy, whereas the real designer may be
in meetings.

But the introduction of a software component between the sales clerk and the designer also
gives us an opportunity to get more flexibility into the process, since we no longer need to fix
the identity or location of the designer in advance. The designer proxy can stand for many
designers, perhaps not yet identified. Instead of being given access to a single product
designer, the sales clerk is potentially given access to an entire network/system/process.

QQQ If there is a large network of designers available, on what basis does a particular
task get routed to a particular designer?

Except in a very small organization, the sales clerk will not know all the designers personally,
and is very unlikely to know which of them are busy at a given time. In any case, it may not
be appropriate for the sales clerk to select a designer, based on whatever knowledge or
opinions the sales clerk might have of a given designer’s capabilities. With proxies, our
solution is both scaleable, and allows for different criteria of designer selection and work
allocation to be implemented.

Perhaps there is a group of designers in Hong Kong, working a different shift pattern to the
European designers. (Many distributed workflow systems take full advantage of the shifting
time-zones around the world.) Perhaps the company has recently merged with a company in
Germany, whose designers specialize in leather garments. (The system could route tasks
according to specialist requirements of knowledge and skill.) Perhaps the company has a joint
venture with a chemical company, developing new man-made fabrics.

SCIPIO Case Study: Liam O’Croder

© Copyright 1998 Richard Veryard Page 21

QQQ How does the behaviour of the design proxy relate (if at all) to the behaviour of
the designer?

The designer proxy needs to anticipate the behaviour of the designer. Ideally, the designer
proxy needs to ask all the questions that the designer himself will ask. One way of achieving
this is to build an intelligent proxy that will learn from experience - adding questions according
to the history of previous exchanges. However, this could result in the designer proxy asking
considerably more questions than a real designer would ask.

Product Design also needs proxies.Product Design also needs proxies.

Customer

Designer

Product Design Sales Order
Processing

Sales
Clerk

Just as the sales clerk talks to a design proxy, the designer may need to be able to talk to a sales
proxy, or even a customer proxy, which would be another software component giving a
similar degree of flexibility and transparency in reverse.

QQQ What proxies are needed by Product Design? Sketch a plausible model showing
this.

QQQ Does the Designer need to know whether he is talking to the Sales Clerk or
directly to the Customer? Would a combined proxy provide greater flexibility?

SCIPIO Case Study: Liam O’Croder

© Copyright 1998 Richard Veryard Page 22

Specifying Components and InterfacesSpecifying Components and Interfaces

When we have a complete understanding of the behaviours and services that are required, we
can partition them into components, with clearly specified interfaces. A component can
only be used through an interface. Several behaviours and services may be bundled into a
single component. In some technical environments, a component may offer its services
through several interfaces.

It is at this stage that we consider the opportunities to reuse and enhance legacy systems. We
use similar techniques to describe the behaviour of chunks of legacy system, and this defines
what is required to convert these chunks into proper components - for example, stripping and
wrapping techniques.

We design the sales application as a hierarchy of services, delivered byWe design the sales application as a hierarchy of services, delivered by
components.components.

Sales Clerk

Sales Application

Designer Proxy

Order Capture

Customer Details Goods Details Payment Details Delivery Details

Customer Details Goods Wanted Demand Details Designer Details

Credit Card

Price Time

This view shows the design of the sales application as a hierarchy of components delivering
services to one another. This diagram shows the hierarchy in the form of nested boxes - tree
diagrams provide an alternative (equivalent) representation.

The software design is decomposed to the level of individual screens/windows, and to
individual database accesses.

Ideally, many of these low-level components will already exist, either in the form of existing
legacy functionality that can be wrapped to provide the required interface, or in the form of
generic components from an existing component library that can be plugged in to provide the
required service.

We adjust the design to make best use of the components we already have.We adjust the design to make best use of the components we already have.

Some credit card functionality already exists. We can subdivide the Credit Card component
into the existing functionality and the new functionality. There are then three design options:

SCIPIO Case Study: Liam O’Croder

© Copyright 1998 Richard Veryard Page 23

1. Preserve the interface of the existing component. Adjust the interfaces of the components
that interact with it.

2. Modify the existing component to extend its interface. (This would normally need to be
done in a way that preserved the existing interface for existing uses.)

3. Add a bridging component that allows the existing component to be used without
modification, and without changing the design.

The workflow is implemented as a string of components.The workflow is implemented as a string of components.

We can use workflow management software and/or middleware to administer the actual
exchange of messages between the relevant people/departments.

Sales Clerk Designer

Exchange

Sales Application Design Application

Exchange

Component Component Component Component Component Component

Workflow Management
/ Middleware

Most of the order capture functionality already exists - and we want to reuseMost of the order capture functionality already exists - and we want to reuse
it.it.

Sales
Clerk

Customer

request

Sales
Application

customer
details

order
confirmation

order
details

order
confirmation

Sales Application

Vocabulary

Operations
Take Customer Details

postcondition: customer exists

Take Order Details
precondition: item in catalogue
postcondition: order exists

Customer

Catalogue
Item

Order*
*

Most of the order capture functionality already exists in the legacy system. We don’t want to
rebuild this if we don’t have to. Instead, we can wrap the legacy code so that it performs the
required operations in the manner of a component.

SCIPIO Case Study: Liam O’Croder

© Copyright 1998 Richard Veryard Page 24

Our new system complicates the data structure.Our new system complicates the data structure.

Sales Application

Vocabulary

Operations
Take Customer Details

postcondition: customer exists

Take Order Details
precondition: item in catalogue
postcondition: order exists

Customer

Catalogue
Item

Order*
*

Sales Application

Vocabulary
Customer

Order*
*

Special
Item

Catalogue
Item

Item

Operations
??

QQQ What are the operations of the new component?

There are many existing applications that reference CATALOGUE ITEM. Some of these should
continue to reference CATALOGUE ITEM, while others will now need to reference the more
general ITEM.

QQQ Which applications would you expect to require CATALOGUE ITEM only?

QQQ Which applications would you expect to require all occurrences of ITEM?

We may need to implement this by creating a component with multiple interfaces. We can
then gradually reconnect existing applications to this new component. In the short term, some
manual adjustment (e.g. to management information reports) may be required.

QQQ Which applications would you expect to be most critical for reconnecting to the
correct data structure? Which applications (if any) would you expect to be least
critical?

SCIPIO Case Study: Liam O’Croder

© Copyright 1998 Richard Veryard Page 25

Our new system complicates the rules (“Our new system complicates the rules (“postconditions”) for taking an order.postconditions”) for taking an order.

This is an additional behaviour.This behaviour exists in legacy system.

A
N

D

Order Details
Taken

IF

O
R

Item is in
catalogue

New Order
Created

Item is not in
catalogue

Design Requirement
Created

A
N

D

The preferred option for implementing this additional behaviour is to wrap the existing
behaviour as a component, and create the additional behaviour as another component.

Existing behaviours can be extracted from legacy systems.Existing behaviours can be extracted from legacy systems.

Item is in
catalogue

New Order
Created

A
N

D OLD COMPONENT

Vocabulary

Operations
Create New Order

precondition: item is in catalogue
postcondition: new order created

Customer

Catalogue
Item

Order*
*

Additional behaviours can be specified as new components.Additional behaviours can be specified as new components.

A
N

D

Item is not in
catalogue

Design Requirement
Created

?
NEW COMPONENT

QQQ Specify the new behaviours that are required.

SCIPIO Case Study: Liam O’Croder

© Copyright 1998 Richard Veryard Page 26

Our new system relaxes the rules (“preconditions”) for selling an item.Our new system relaxes the rules (“preconditions”) for selling an item.

AS IS

Item can be
ordered

Item is in
catalogue

IF

TO BE

A
N

D

Item can be
ordered

IF

O
R

Item is in
catalogue

New item is
approved

Design is
approved

Manufacturing is
approved

Costing is
approved

QQQ How do we implement this additional complexity? How do we enforce the
preconditions for ordering an item?

QQQ How does the existence of non-catalogue items affect data structures? How
does the existence of non-catalogue items affect other processes?

QQQ How do we minimize impact on other systems?

SCIPIO Case Study: Liam O’Croder

© Copyright 1998 Richard Veryard Page 27

Specifying Physical MechanismsSpecifying Physical Mechanisms

The components are distributed onto the appropriate physical platforms.The components are distributed onto the appropriate physical platforms.

Sales Clerk

Sales Computer

Customer Details

Goods Details

Goods Wanted

Demand Details

Price Time

Delivery Computer

Customer Details Delivery Details

Credit Card

Design Computer

Designer DetailsGoods Planned

Accounts Computer

Customer Details Payment Details

Credit Card

Designer

This view shows the physical configuration and distribution of the components onto elements
of the technical infrastructure. The technical choices made here affect such quality
characteristics of the final system as reliability, availability, robustness and performance - these
are often known as ‘non-functional’ requirements. These characteristics connect back (or at
least they ought to) to the distribution of responsibilities and risks identified in the enterprise
view.

This physical view establishes some requirements for the technical platform(s), and allows the
desired technical performance characteristics (of hardware, network and system software) to be
calculated or estimated. But of course there are many other requirements on a technical
architecture and on the procurement of technical platform components, and we shall not be
discussing these further here.

We select the appropriate communication mechanisms.We select the appropriate communication mechanisms.

There are many ways of passing messages from one human role to another. For example, they
may be transmitted by email or phone, or embedded in a computer system (e.g. workflow
management software).

For messages between computer components, we may use workflow management software or
middleware for transmission.

We may also need to consider control mechanisms, to ensure that all messages arrive promptly
and securely.

SCIPIO Case Study: Liam O’Croder

© Copyright 1998 Richard Veryard Page 28

Stepwise ImplementationStepwise Implementation

We specify each step of the implementation.We specify each step of the implementation.

STEP 1 Ø Sales application sends email to design department.

Ø Designer talks individually to customer.

Ø Design department creates sales paperwork.

Ø Production/delivery handles special order manually.

STEP 2 Ø Sales and design as step 1.

Ø Production/delivery handles special order automatically.

STEP 3 Ø Finish automating exchange between sales and design departments.

Ø Implement design proxy.

Component-based development allows us to implement the solution in cleanly separate stages.

The separation of these steps is primarily focused on reducing disruption to the user
departments. When we’re thinking about business process improvement, convenience to the
IT professionals should come a long way second.

The initial solution is highly restricted.The initial solution is highly restricted.

Sales
Clerk

DesignerCustomer

request

Production
& Delivery

Sales
Application

agreement

request
email

order

email

order fulfilment

Ø Designer exercises control of
workflow

Ø Designer talks directly to
customer

Ø Designer operates sales
application

Ø Only appropriate for small
volumes.

The first step is quick and cheap, and may be regarded as a business prototype, to establish a
proof-of-concept. This will help management to decide whether to continue with the change,
and will help users to understand the details of the change.

SCIPIO Case Study: Liam O’Croder

© Copyright 1998 Richard Veryard Page 29

Final Points and ReviewFinal Points and Review

SCIPIO aims and principlesSCIPIO aims and principles

QQQ In the light of the case study, what is now your view of the aims and principles of
SCIPIO?

Component-Based DevelopmentComponent-Based Development

QQQ To what extent is this story dependent on new technological possibilities, such as
Component-Based Development?

In what way is CBD a necessary part of this story? After all, many of the supposed advantages
of CBD, such as reuse, have been promised by earlier approaches, including modular
programming and design. Is CBD really any different from these earlier approaches?

In my opinion, the key difference lies not in the way the software systems are developed -
although there are certainly some differences there - but in the way the new software is
installed and deployed. In our example, it is possible to define a new component connecting
sales with product design, without knowing the details of the sales process or the product
design process. This has several potentially valuable implications:

Ø The same component can be deployed across a diverse organization, without enforcing a
single global standard set of operating procedures upon the design departments or sales
teams.

Ø A design department can continue to use the same component while it is undergoing
other operational changes and improvements.

Modelling Notations and Use of diagramsModelling Notations and Use of diagrams

The case study shows how we can analyse a business process opportunity through to the
specification of software components, using the same modelling notations throughout.

The modelling notations used in this example are an extension of UML. The main difference
from UML is the concept of exchange, which we have found indispensable for modelling
both business conversations and aggregations of message traffic between software components.
We use the exchange diagram in a way that is complementary to the interaction diagrams and
class diagrams of UML.

QQQ Does each diagram make sense on its own? Do the diagrams support each other?
What difficulties do you foresee in practice?

SCIPIO Case Study: Liam O’Croder

© Copyright 1998 Richard Veryard Page 30

Sequence of tasksSequence of tasks

We have shown a progression of models through this case study. We started with an outline
view of a business process, which led to models of business relationships. We then explored
transactions and exchanges in more detail, before focusing on the behaviours required from
the system - both from human roles and from software components. In this story, the
constraints and opportunities of the legacy systems and physical infrastructure were left until
towards the end.

It may be very tempting to regard the sequence of diagrams presented in this case study as a
traditional waterfall. In practice, we have to work in parallel with all five views. In particular,
many elements of the design may already be given from legacy systems or from available
component sources, and may dominate the solution. Only in an idealistic ‘greenfield’ project
can we pretend to follow a top-down approach.

Enterprise View
 Process as Collaboration

Transaction View
Process as Exchanges

Behavioural View
Process as Activities

Design View
Process decomposed to
Component Services

Physical View
Process Infrastructure

implemented as

implemented as

implemented as

implemented as

enables

enables

enables

enables

Demand
Led

Business
Needs

and
OpportunitiesSupply

Led

Existing
Components
and Legacy

Systems

Furthermore, although many of the requirements traditionally known as ‘non-functional’ are
addressed in the physical view, it is usually unwise to leave these requirements to late stages of
a development project.

QQQ Does the (implied) sequence make sense? What other sequences might have
worked? What difficulties do you foresee in practice?

