
Author: Richard Veryard
Version: October 14th1998

richard@veryard.com
http://www.veryard.com

For more information about SCIPIO, please
contact the SCIPIO Consortium.

info@scipio.org
http://www.scipio.org

 Copyright 1998 Richard Veryard Page 1

Understanding
Business Requirements
in terms of Components

SCIPIO Business Requirements

© Copyright 1998 Richard Veryard Page 2

PrefacePreface

Purpose of documentPurpose of document

Describes the techniques used by SCIPIO for analysing business requirements.

Should be read in conjunction with one or more documented case studies for SCIPIO.

AcknowledgementsAcknowledgements

This material was developed for presentation at the CBD Seminar in Birmingham, October
1998. Thanks to David Sprott and Lawrence Wilkes of the Butler CBD Forum for their
encouragement.

SCIPIO Business Requirements

© Copyright 1998 Richard Veryard Page 3

IntroductionIntroduction

Component-Based Development:Component-Based Development:
New solution to old problems?New solution to old problems?

Technology writers often present CBD as the latest silver bullet in a long line of silver bullets.
The supposed benefits of CBD - application flexibility, development productivity - have been
promised many times before.

Furthermore, the business problems addressed by CBD don't seem very different from the
business problems addressed by previous methods, such as Information Engineering. Indeed,
some tools and methods companies continue to use the same case study material (notably
various forms of Video Store) in their training courses; this reinforces the impression that CBD
offers nothing substantially new to the business world, and is merely an internal IT matter.

But CBD is more than a marginal improvement to previous software techniques. It has
specific relevance to the demands placed on IT by business, and enables us to address a whole
range of new business problems.

Parallel development of business and ITParallel development of business and IT

There are some important structural parallels between recent IT trends and recent business
trends.

During the 1990s, the IT world has been slowly moving towards open distributed processing.
Meanwhile, the business world is moving towards open distributed business - the so-called
virtual organization. Many writers acknowledge this, and there is considerable discussion of
specific aspects of this trend, such as Internet and e-commerce. Modern business
organizations are best viewed horizontally, in terms of the internal and external relationships
and their associated transaction costs, rather than as hierarchical command structures.
However, the general lessons for software development are not always drawn out.

Changing requirementsChanging requirements

Software writers almost always mention the increasing rate of change in the business and
technological environment, but this is not analysed further. The business environment in
particular is merely regarded as a random generator of new software requirements, and there
are no attempts to identify any patterns or trends of business change. The response is to
improve software architectures and the software process, supposedly to make software more
responsive to random requirements change.

But although specific business changes cannot always be foreseen, there are some important
patterns. If we can understand the kinds of things that are going on in the business world, we
may be able to anticipate, or even promote, business change.

SCIPIO Business Requirements

© Copyright 1998 Richard Veryard Page 4

Business ChangeBusiness Change

Walmart transformed its business process by rearranging theWalmart transformed its business process by rearranging the
process elements.process elements.

A well-known example of process change is provided by the US retail chain Walmart, which
transformed its business relationships as follows.

Goods were received from suppliers and displayed on the shelves in the retail store. But
instead of the goods belonging to the retail organization, ownership remained with the
suppliers. Walmart did not pay the supplier until the goods had been purchased by a
customer.

QQQ What are the benefits of this change to Walmart?

QQQ Are there any benefits to suppliers? Why would suppliers agree to bear the
costs and risks of retail inventory?

Before

v We pay for goods when we
receive them from suppliers.

v If noone buys them, it’s our
problem.

After

v We pay for goods when a
customer buys them.

v If noone buys them, it’s the
supplier’s problem.

Note that this transformed process involves the same process steps but in a different sequence.

Receive
goods

Display
goods on
shelves

Sell goods to
customer

Pay supplier

Dispose
unsold goods

Negotiate
with supplier

QQQ Show the difference between the Before and the After by drawing two process
flow diagrams.

It is reported that the IT costs of this transformation were relatively small, as the applications
were already well-designed and well-integrated, and could therefore be substantially reused to
support the new business requirements.

SCIPIO Business Requirements

© Copyright 1998 Richard Veryard Page 5

There are three modes of business process change.There are three modes of business process change.

As we have seen, Walmart’s process change can be regarded as a transformation.

Typically, simplification comes before integration (“don’t pave the cow-paths”) and integration
before transformation. Early writings on business process reengineering concentrated on
simplification.

Simplification Integration Transformation

v Removing redundant
tasks

v Removing unwanted
variety / complexity

v Single entry to multiple
services

v Reducing interaction
distances between
process steps

v Connecting separate
processes

v Altered business
relationships

v Reconfigured business

reduced cycle time

improved customer satisfaction
& business excellence

In this document, we shall consider an example of process integration.

SCIPIO Business Requirements

© Copyright 1998 Richard Veryard Page 6

ComponentsComponents

We can use components to improve links between We can use components to improve links between existingexisting
business processes.business processes.

A mail order company has two separate business processes. PRODUCT DESIGN creates a
product catalogue, which is distributed to customers. CUSTOMER SALES receives phone
calls from customers and creates sales orders.

Sometimes customers request product variations that are not included in the catalogue. In the
current business system, these requests are politely rejected by the sales clerk, and there is no
mechanism for informing the product designers. This represents lost business opportunity.

If we could plug-in a link between the customer sales process and the product design process,
we might be able to handle (at least some of) these opportunities, and generate more business.

Sales Clerk

Customer

Designer

Customer Sales

Product Design

Product
Catalogue

Handle customer request
for special item.

NEW

This link can be regarded as a component of the business1. We call it a component, although
it is not itself a software component, because we intend it to have some of the properties
associated with software components, and to have clearly defined behaviour and interfaces.
And we are going to use some software components, together with some well-defined pieces of
human activity, to implement this component.

1 We'd like to use the term business component to denote a component of the business. However,
many software writers use the term to denote a business-oriented software component. To avoid
confusion, we refer to a well-defined chunk of business activity with component-like characteristics as a
component of the business.

SCIPIO Business Requirements

© Copyright 1998 Richard Veryard Page 7

The behaviour of the whole system changes with theThe behaviour of the whole system changes with the
introduction of a new component.introduction of a new component.

Product Design

Designer

Customer

Sales Order Processing Order Fulfilment

Handle Item not
in Catalogue

Sales Clerk Handle Item in
Catalogue

NEW

We want to define the requirements for the new software components; and we also want to
define changes to job descriptions. Thus we need to specify how the overall behaviour will
change, and what additional behaviours are required.

There is then a high-level design task to decide which of the new behaviours will be carried out
by software components, and which of them will be done by human roles: the sales clerk and
the designer.

Using object modelling techniques, we can use class diagrams to specify the required
behaviour of each role and each software component, as well as interaction diagrams to
explore the interactions between them. Interaction diagrams are essential if we wish to analyse
the emergent properties of the whole system.

SCIPIO Business Requirements

© Copyright 1998 Richard Veryard Page 8

Systems and Use CasesSystems and Use Cases

Systems are composed of Systems are composed of cooperating subsystems.cooperating subsystems.
This may include human roles as well as software.This may include human roles as well as software.

Some object-oriented methods start requirements analysis with use cases, while others argue
that it is better to do some other kind of modelling (such as business process modelling) first.
SCIPIO is in the latter camp.

We view the overall business system as a collaboration between chunks of business activity;
some of these may be performed by software components and some by human roles. Our
business models concentrate on these collaborations.

Customer

Business System

Worker Software System

Component

Legacy Application

Component

C
om

ponent

The diagram shows several nested levels of system.

v The customer interacts with the business system.

v Within the business system, the worker interacts with the software system.

v Within the software system, the legacy application interacts with three new software
components.

At any level, the external behaviour of the system or component can be defined as a set of use
cases, which indicate the ways the system or component can interact with things in its
immediate environment. A use case defines a binary interaction between a system and a
human role (the "user" of the system).2 By extension, the use case notation can also be used to
define a binary interaction between two software artefacts: client and server.

2 Note that our model contains both binary interactions and n-ary interactions. In SCIPIO, we model
these as exchanges. In other methods, such as Catalysis, these are modelled as joint actions. UML
lacks an equivalent concept.

SCIPIO Business Requirements

© Copyright 1998 Richard Veryard Page 9

It is important to maintain a clear distinction between the behaviour of the business system
and the behaviour of the software system. This may mean producing two distinct sets of use
cases, and documenting the relationships between them.

Use Cases describe external behaviour of systems.Use Cases describe external behaviour of systems.
We need to analyse nested levels of behaviour.We need to analyse nested levels of behaviour.

Business requirements analysis looks at the relationship between the required behaviour of the
business system and the software system.

Software requirements analysis looks at the relationship between the required behaviour of the
software system and its components.

Customer

Business
System

Worker

Software
System

New
Component

Legacy
Application

business
requirements

analysis

software
requirements

analysis

It is possible to start a software project by specifying the use cases for the software system. In
some circumstances this can reduce project duration and cost. But if the business context in
which the system is to operate is left implicit and unanalysed, this has four possible
consequences.

v Difficulty agreeing system requirements and priorities with users - extended project
timescale.

v Difficulty for users to understand how to use the software effectively - reduced system
usability.

v Missed opportunities for business process improvement - reduced business benefits.

v Software is less robust / flexible in the face of future business change - reduced system
maintainability.

However, even if business requirements analysis is not done upfront, it is always possible - and
often useful - to do it later on.

Projects address different levels of system.Projects address different levels of system.

This raises the practical question: who is going to do this work?

SCIPIO Business Requirements

© Copyright 1998 Richard Veryard Page 10

Most IT work, whether inhouse or outsourced, is structured as projects. Projects may be
scoped according to different notions of system.

v On some projects, the behaviour of the business system as a whole is open to being
reengineered. This may involve simplification, integration or transformation.

v On some projects, the behaviour of the business system is fixed or pre-defined, and the
analysis and design concentrates on the required behaviour of the software system.

v On some projects, the focus is on building new components.

IT-based projects often find it difficult to gain access to the business change issues. This is a
particular problem for external IT suppliers, such as software houses and systems integrators,
whose project terms of reference are constrained by contractual arrangements. But in many
organizations, it is difficult even for internal staff to establish management ownership or
sponsorship of the business change issues.

SCIPIO Business Requirements

© Copyright 1998 Richard Veryard Page 11

InteractionsInteractions

We focus our analysis on improving interactions.We focus our analysis on improving interactions.

Polite but Unhelpful
Sales Clerk

Customer

Customer Sales

Exchange

Product Design

Helpful
Sales Clerk

Customer Designer

Customer Sales

Exchange Exchange

The sales clerk who
can interact with

Product Design can
interact better

with the customer

Interactions at all levels can be improved. This includes interactions internal to a system, as
well as interactions between the system and its environment. SCIPIO places primary
emphasis on improving business relationships, according to a defined business strategy.

Usually we want to improve interactions by reducing interaction distances - making
interactions easier, quicker, cheaper and more reliable. However, in some cases we want to
maintain or increase interaction distance - making certain classes of interaction more difficult,
for reasons of security or autonomy. This involves a device known variously as a Chinese
Wall (at business system level) or Firewall (at software level).

This raises the question: improvement for whom? There may well be some stakeholders
whose intentions are frustrated by the Chinese Wall, and whose transaction costs are
increased. It is always important to identify potentially hostile stakeholders, such as fraudsters
and any others whose intentions conflict with your business rules or objectives. Furthermore, it
may be a business decision to improve some relationships at the expense of others. These
business decisions should be explicit rather than inadvertent.

An exchange is designed as a system of messages.An exchange is designed as a system of messages.

We view a business system as a set of exchanges between agents (human roles or software
artefacts).

Customer Sales Clerk Designer

Exchange Exchange

SCIPIO Business Requirements

© Copyright 1998 Richard Veryard Page 12

Each exchange can be regarded as an aggregation of messages, over a range of scenarios.

Customer Sales Clerk Designer

request

offer

acceptance

request

can this customer have
a size 18 in dark green?

offer

yes, but it will cost £5
more than the size 16, to

pay for the extra material

We may show a specific sequence of messages using a simplified form of UML notation as
above. It is often useful to annotate the diagram with specific instances of messages, as shown,
to make them more meaningful to business users.

Business concepts can be tested at low cost and risk.Business concepts can be tested at low cost and risk.

In this example, the business change is a business experiment. At first, we have no way of
knowing how much extra revenue we might get. So we don't want to make a large investment
commitment.

Component-based thinking helps here. We can install a "paper and string" mechanism to test
the business concept. Perhaps this might involve an email message to the design department,
generated automatically from the sales application. This mechanism may be unreliable, slow,
and unable to handle large volumes, but it may be good enough to test the business feasibility
of the concept. We can then replace this mechanism with a properly engineered component,
once the business case has been verified. The improved mechanism can be plugged in without
affecting the existing components, provided that the interfaces remain the same. In particular,
the sales clerk does not have to be retrained.

Generalized interactions can make excellent reusableGeneralized interactions can make excellent reusable
components.components.

Many of the relationships in this example can be regarded as forms of proxy.

SCIPIO Business Requirements

© Copyright 1998 Richard Veryard Page 13

Requirements Capture

Designer

Designer
Proxy

Sales Clerk

Customer
Proxy

Customer

v The software acts as proxy
for the designer.

v The software acts as proxy
for the sales clerk.

v The sales clerk acts as
proxy for the designer.

v The sales clerk acts as
proxy for the customer.

We might imagine an ideal world in which the customer always talks directly with the product
designer. This would mimimize the interaction distance between them.

However, in the real world, customers may only get personal attention from designers on an
exceptional basis. (If the request is very interesting, or the customer is very rich.) The rest of
the time, the customer talks to the sales clerk, who represents (stands proxy for) the designer.
Conversely, when communicating with the designer, the sales clerk represents (stands proxy
for) the customer. We want these proxy relationships to be as effective and efficient as
possible.

Furthermore, the sales clerk probably doesn’t even have instant access to a product designer.
Instead, the sales clerk communicates with a software component that represents the designer,
which we may call the DESIGNER PROXY. This software knows (or learns) the questions
that the designer will want to ask in a given situation, collects the relevant information, and
channels it to a designer (perhaps using workflow management software or message-oriented
middleware).

Using proxies improves the flexibility of the solution at all levels. The designer may be located
anywhere in the world, in any timezone, and may be employed by a separate company, and
this is transparent both to the sales clerk and to the customer.

Proxy behaviour may be implemented as a generalized component. We may also use
frameworks to implement such abstract relationships3.

3 For more information on frameworks, see Catalysis.

SCIPIO Business Requirements

© Copyright 1998 Richard Veryard Page 14

Component thinking helps business change.Component thinking helps business change.

It is commonly argued that component thinking brings value to software development.

In this paper, I have tried to show how component thinking extends into the business
requirements domain. We can regard clusters of business activity as components, regardless of
the extent to which they may be performed by people or software.

There are several advantages of component thinking at the business requirements level. We
can identify three in particular.

Public interfaces make business more flexible and scaleable4.

Each organization unit performs defined
services.

Contracts and service level agreements are
based on clear division of responsibilities.

If we think of organization units as “components”,
we can use component-style modelling to define
the services they provide. Each organization or
unit has a clearly defined interface, and its
performance can be measured in terms of a
service level agreement monitored across the
interface.

Stepwise implementation supports evolutionary change.

Changes can be made in one organization
unit at a time, without affecting other
units.

Business concepts can be tested quickly and
cheaply

v “paper and string” mechanisms

v low volumes

Valid business concepts can be supported
by robust software components.

Changes to a business can be made in modular
fashion. Instead of disrupting the whole
organization/process at the same time, we can
make local changes quickly and cheaply, while
holding the interfaces between units, provided
that the overall architecture of the organization
supports this. This makes it possible to implement
genuine business prototypes, which test whether a
new business concept actually works in a live
business environment, before engaging in large-
scale software development.

Seamless development aligns business change with system
change.

Common approach for business
analysis and systems analysis..

If we want to use component-based software
development, there is a natural and seamless
progression from business requirements analysis to
software requirements analysis.

4 This sometimes known by the rather ugly neologism: rightsizing.

SCIPIO Business Requirements

© Copyright 1998 Richard Veryard Page 15

ReferencesReferences

SCIPIO. For more details on SCIPIO, please see the SCIPIO website at
http://www.scipio.org/

Among other things, the SCIPIO website offers a more detailed version of the mail order case
study, as well as a full development process framework.

Catalysis. For more details, please see the Trireme website at http://www.trireme.com/

