T172 Working with our Environment *Technology for a sustainable future*

First Tutorial 21/2/04

Introductions

- name
- where are you from?
- what do you do?
- other OU courses?
- why are you taking T172?

Course Aims

To enable you to understand:

- a) how the use of technology to meet human material needs contributes to environmental effects, and
 - b) how technology may be used to protect the environment;
- 2. how technology may be employed to design products, processes and systems that contribute to the development of an environmentally sustainable future.

Course structure

Study techniques

- Allocate time
- Use "dead" time
- Plan ahead
- Be selective
- Tutor support
- Self study groups

Assessment

- Preparatory exercises
- 5 TMAs
- End of course assessment (ECA)

TMAs

- Plan ahead
- Don't leave until last minute!
- Read questions carefully
- Look at mark allocations
- Try to answer all questions
- Tidy and legible
- Appropriate length
- Post before cut off date
- Get certificate of posting
- Weigh ensure enough stamps!
- Extensions

Any problems?

• ughhh!

Our Impact on the environment

- List the main environmental impacts caused by UK households
- Rank them

What is energy?

- Capacity to do work
- Units
 - joules (J)
 - -1J = 1 Nm

Energy Conversion

- Energy cannot be created or destroyed
- It is converted from one form to another
- List some forms of energy
- What is the exception to this rule?
- $E = mc^2$

Energy Conversion

• Example - A fire burning

Exercise - Energy conversion

- 1. Electricity supplied to an electric drill
- 2. An immersion heater heating water for a bath
- 3. Car tyres heated up as the car brakes rapidly
- 4. A clockwork toy train running round a track
- 5. Water from a reservoir used to generate electricity

What is power?

- Rate of work, or
- Rate of energy conversion
- Units
 - watts (W) = Js⁻¹

An Analogy

Distance travelled

 \equiv energy

Speed \equiv Power

Exercise

• An electric fire has a rating of 1000 W. How many joules does it consume in 1 hour?

Answer

Power (watts) = Energy (joules) time (secs) So, Energy (joules) = Power (watts) x time (secs) So, Energy = 1000 W x (60 x 60 s) = 1000 W x 3600 s = 3,600,000 J = 3.6 x 10⁶ J = 3.6 MJ

Units

- kilowatt hours (kWh)
- Alternative unit of energy
- 1 kWh = 3.6 MJ *

* See previous page for derivation of this relationship

Units - Prefixes

- kilo 10^3
- Mega 10⁶
- Giga 10⁹
- Terra 10¹²
- Peta 10¹⁵
- Exa 10¹⁸

KMGTPE (King Midas' golden touch poisoned everything)

Exercise

- Express 1,000,000 kJ as
 - MJ
 - TJ
 - PJ

Answer

1,000,000 kJ is equivalent to

 1,000 MJ
 0.001TJ
 0.000001 PJ

Exercise

• Express $7.2 \times 10^6 \text{ kJ}$ as

- -MJ
- GJ
- PJ
- -kWh

Answers

7.2 x 10⁶ kJ is equivalent to:
7.2 x 10³ MJ
7.2 GJ
7.2 x 10⁻⁶ PJ
2 x 10³ kWh

Exercise

Convert the following into kWh
- 3.6 MJ
- 3.6 GJ
- 7.2 PJ

Answers

- 3.6 MJ = 1 kWh
- 3.6 GJ = 1,000 kWh
- $7.2 \text{ PJ} = 2 \text{ x } 10^9 \text{ kWh}$