Tutorial 4

Travelling Light

TMA 4

- Sources and impacts of CO₂, SO₂ & No_x
- Environmental impacts of steel production
- Cars
 - Kinetic energy
 - Effect of design on fuel consumption
- Report on travel (60% of marks)

Finding Information

- Use course glossary / index
- Be selective

Exercise

• What are the environmental impacts of road transport?

Spray Diagram

Life Cycle Assessment

Examines environmental impacts which occur "from cradle to grave"

Life Cycle Assessment - Petrol

Extraction of oil

Transport of oil

Refining

Transport

Calculation

■ A car weighs 1600 kg. The driver weighs 80 kg. What is its kinetic energy when driven at 90 km hr ⁻¹?

Answer

- Kinetic energy = $0.5 \text{ m } \text{v}^2$
- Where
 - m = mass (kg) and
 - v = velocity (m/s)
- First convert velocity in km/hr to m/s
 - Divide by no. of seconds in 1 hour (3600)
 - Multiply by no. of metres in a km (1000)
 - So 90 km/hr = $90 \times 1000 = 25$ m/s 3600

Answer (continued)

- \blacksquare Total mass = 1600 kg + 80 kg = 1680 kg
- So kinetic energy = $0.5 \times 1680 \times 25^{-2}$

 - = 525000 J
 - $= 5.25 \times 10^5 J$, or
 - = 525 kJ

Exercise

- I traveled to Chester (80 mile round trip) five times by car.
- 1. How much energy did I use?
- 2. How much CO₂ did I generate?

Answer – Q1

- Total distance travelled was 400 miles
 - 400 miles = 400 miles x 1.6 km mile⁻¹
 =640 km
- From Table 3.4 in Theme 2
 - Average car consumes 3.5 MJ km⁻¹
- Energy consumed
 - $= 640 \text{ km x } 3.5 \text{ MJ km}^{-1}$
 - = 2240 MJ

Answer – Q2

- Total distance travelled was 400 miles
 - 400 miles = 400 miles x 1.6 km mile⁻¹ = 640 km
- From Table 4.2 in Theme 2
 - Average figure for petrol car is 385 gm CO₂ km⁻¹
- Energy consumed
 - $= 640 \text{ km x } 385 \text{ gm CO}_2 \text{ km}^{-1}$
 - = 246400 gm
 - = 246.4 kg

(note that this is equivalent to 0.25 tonnes!)

Minimising Our Impact on the Environment

- Prevention
- Technical measures
- Administrative measures

Exercise

• What measures can we consider to reduce the environmental impacts of road travel?

Report of Travel

- Analyse your travel 14 marks
- 2. Assess information collected 8 marks
- Develop 5 year plan to reduce your CO₂ emissions 25 marks
- 4. Discuss the viability of your plan 10 marks

3 marks for presentation (Total of 60 marks)

Report Writing

See guidance (on web site)

Some tips

- Stage 1
 - Use table to present data
 - For energy use see Table 3.4 in Theme 2
- Stage 2
 - Identify and explain
- Stage 3
 - Should be based on your own travel
 - Option b available if your road travel is minimal

Some tips (continued)

- Stage 4
 - Pros and cons
 - Strengths and weaknesses
 - Who needs to do what