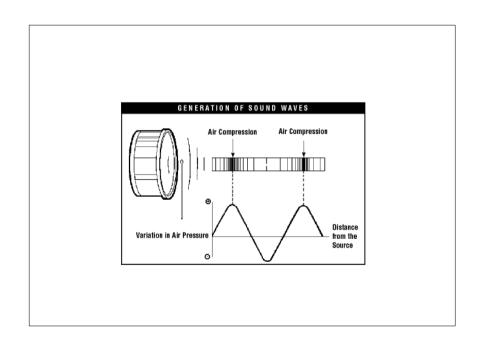
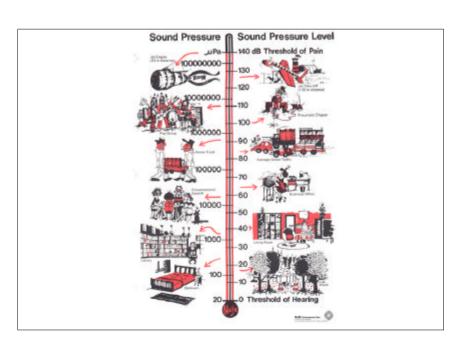
Occupational Hygiene - Physical Agents

Mike Slater

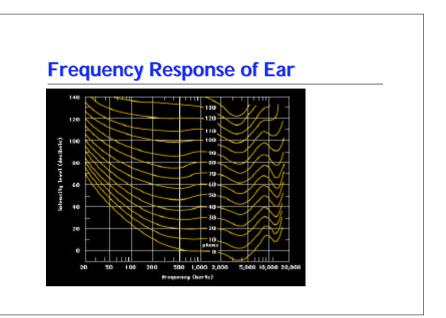


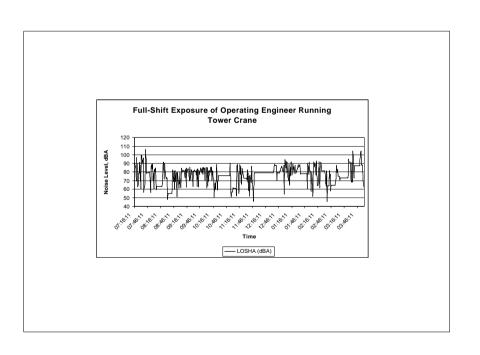
Number of people exposed to noise at work (HSE 1996) 5,000,000 4,000,000 2,000,000 1,000,000 485 dBA 90 - 95 dBA 100 - 110 dBA 85 - 90 dBA 95 - 100 dBA > 110 dBA

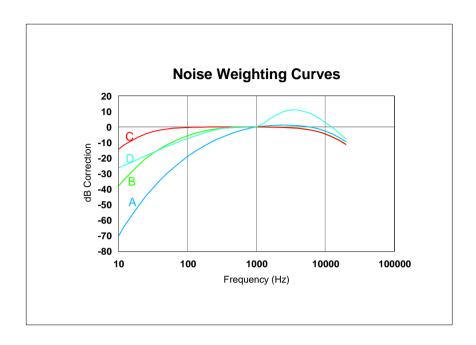

Noise - Health Effects

- Temporary threshold shift
- Noise induced hearing loss
- Noise trauma
- Disturbance / interference

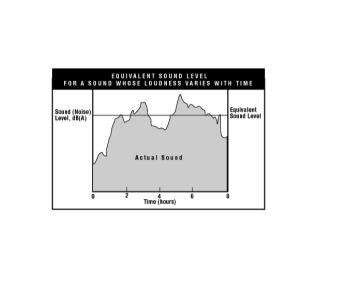
Infra-sound Range of human hearing Ultra-sound 20 20,000 Units - cycles per second (Hertz) Speech frequencies - 500 Hz to 3 kHz


Decibels


Intensity α (pressure)²


$$dB = 20 log \underline{P_1}$$

$$P_{rot}$$



Leq - Continuous Equivalent Sound Level

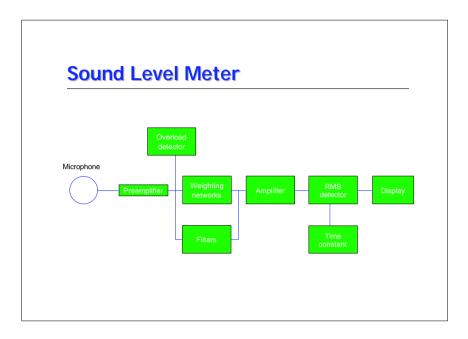
That continuous sound level over a given period of time which has the same energy content as the actual, varying, noise experienced

$$L_{Aeq,Te} = 10 \log_{10} \left\{ \frac{1}{T_e} \int_0^{T_e} \left[\frac{p_A(t)}{P_0} \right]^2 dt \right\}$$

Equal Energy Principle

- Equal amounts of A weighted sound energy are equally damaging
- If noise level increases by 3 dB, exposure time must be halved

Noise Action Levels


- First Action Level
 - LEP,d of 85 dB(A)
- Second Action Level
 - LEP,d of 90 dB(A)
- Peak Action Level
 - 200 Pa
 - equivalent to 140 dB

Noise Measurement

- Sound level meters
- Integrating sound level meters
- Octave filter sets
- Dosimeters
- Calibrators

Detector Response

- Fast 125 milliseconds
- Slow 1 second
- Digital displays
 - indicate maximum rms value measured within previous second

Sound Level Meters

Туре	Application	Accuracy at reference conditions	Probable typical accuracy	
0	Laboratory	± 0.4	± 0.5	
1	Laboratory/Field	± 0.7	± 1.0	
2	General Field	± 1.0	± 1.5	
3	Field Survey	± 1.5	± 3.0	

Frequency Analysis

- Octave band analysis
- Breaks down noise spectrum into defined "chunks"
- An octave
 - higest frequency double lowest
 - described by centre frequency (c)
 - range $c/\sqrt{2}$ to $c\sqrt{2}$

Frequency Analysis

- Octave band analysis
- Third octaves
 - smaller "chunks"
 - 3 per octave
- Narrow band
 - sound pressure level in each narrow bands

Dosimetry

- Measure personal exposures
- Affected by body reflections
- Accuracy -1 to +2 dB
- Mount on edge of shoulder
- Ensure 3dB exchange rate

Calibration

- Calibrator types
 - electronic
 - pistonphone
- Use calibrator before and after survey
- Full calibration every 2 years

Noise Surveys

Approach taken depends on:

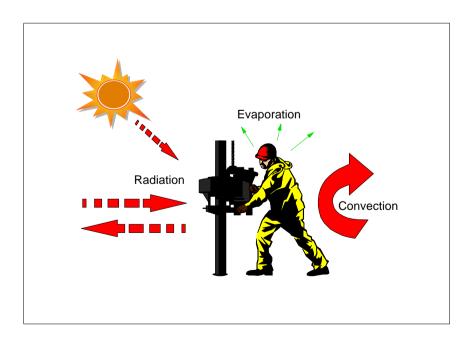
- Objective
- Noise variability
- Working pattern

Noise Surveys

- Walkthrough survey
- "Noise mapping"
- Leq measurements at workstations
- Octave band analysis
 - ear defender selection
- Dosimetry
 - where exposures variable

Noise Mapping

Impulse Noise


- Difficult to measure!
- Instrumentation
 - type 1 meter
 - C weighting
 - fast response
 - peak hold
- Accuracy ± 6 dB

Noise Assessments

- Determine employee daily noise doses
- Define hearing protection zones
- Information on
 - noise sources
 - frequency characterisitics
- Advise on control measures
- Advise on other measures

Heat Stress

Harmful Effects

- Heat Rash (Prickly heat)
- Heat cramps
- Fainting
- Heat exhaustion
- Heat stroke

Increased Risk

- Personnel wearing impervious clothing
- Alcohol
- Medication / drugs
- Obesity
- Poor physical fitness

Evaluation of Heat Stress

- Environmental Factors
 - air temperature
 - radiant heat
 - humidity
 - air velocity
- Human Factors
 - work rate
 - clothing
 - fitness / susceptibility

Acclimatisation

- Physiological adaption to heat
- Results in:
 - increased sweat rate
 - reduced skin temperature
 - reduced core temperature

Measurement

- Air temperature
 - standard thermometer
- Radiant heat
 - globe thermometer
- Humidity
 - whirling hygrometer
- Air velocity
 - kata thermometer

Thermal Stress Indices

- Empirical
 - ET / CET
 - WBGT
 - Predicted 4 hour sweat rate (P4SR)
- Rational
 - Heat Stress Index (HSI)
 - Required Sweat Rate

ACGIH TLVs for Heat Stress

- determine the WBGT
- decide on whether a clothing correction needs to be applied
- compare the WBGT with the screening criteria
- if the corrected WBGT value is within the screening criteria, work can be continued
- if the corrected WBGT value is outside the screening criteria, then a more detailed assessment of heat stress or strain should be undertaken

The WBGT Index

Indoors

$$WBGT = 0.7 T_{nwb} + 0.3 T_{g}$$

Outdoors

WBGT =
$$0.7 T_{\text{nwb}} + 0.2 T_{\text{g}} + 0.1 T_{\text{a}}$$

Clothing Corrections

■ Summer work uniform 0

■ Cloth (woven material) overalls + 3.5

■ Double cloth overalls + 5

Values not provided for encapsulating or impervious suits

ACGIH TLVs Screening Crireia Unacclimatised Workers

	Workload			
	Light	Moderate	Heavy	V.Heavy
Continuous Work	27.5	25	22.5	-
75% work / 25% rest	29	26.5	24.5	-
50% work / 50% rest	30	28	26.5	25
25% work / 75% rest	31	29	28	26.5

Values in degrees C

ACGIH TLVs - Guidelines for limiting heat strain

Discontinue work if:

- sustained (several minutes) heart rate in excess of 180 bpm minus the individual's age in years, for individuals with assessed normal cardiac performance; or
- body core temperature is greater than 38.5 C for medically selected and acclimatised personnel, or 38 C in unselected, unacclimatised workers; or
- recovery heart rate at one minute after peak work effort is greater than 110 bpm; or
- there are symptoms of sudden and severe fatigue, nausea, dizziness or lightheadedness.

ACGIH TLVs Screening Crireia Acclimatised Workers

	Workload			
	Light	Moderate	Heavy	V.Heavy
Continuous Work	29.5	27.5	26	-
75% work / 25% rest	30.5	28.5	27.5	-
50% work / 50% rest	31.5	29.5	28.5	27.5
25% work / 75% rest	32.5	31	30	29.5

Values in degrees C