
The eutofont font format�
William Overington�

29 December 2003�

The eutofont format is an experimental font format which permits a font to be encoded as a�
sequence of Private Use Area characters in the range U+EAC0 to U+EAFF within a Unicode plain text�
file.�

The eutofont format is devised with two niche application areas in mind, though the eutofont format�
may potentially find other applications. The first is for providing user defined fonts for use with the�
DVB-MHP (Digital Video Broadcasting - Multimedia Home Platform) system. A eutofont format font�
can be produced using a plain text editor on a PC and can be broadcast in a plain text file. The�
DVB-MHP system uses programs written in the Java programming language, those programs being�
broadcast, so a eutofont format font can be processed by such a Java program so as to provide�
font capability within the program. The second is for general computing applications where there�
is a need for fonts where the glyphs are not monochrome. The eutofont format allows colouring�
of individual contours, either in indexed palette form, so that background colour, foreground colour,�
first decoration colour, second decoration colour and so on are specified externally by the�
application or by absolute colours in rgb (red, green, blue) format. The former is for general use.�
The latter permits items such as ornaments for holly with berries to be specified with green holly�
and red berries.�

Please know that at the time of writing the eutofont format has not been tested in use. It is a�
theoretical development. However, it has been designed with the experience of producing the�
eutocode graphics format, which has been tested in practice.�

Accordingly, it is unclear whether the format in this document will need to be altered or whether it�
will be suitable as a long term document explaining the structure of a eutofont format font.�
However, in view of the fact that publication of this document is towards the end of 2003, it is�
convenient to regard this format as “eutofont 2003 format” and whether eutofont 2003 format�
becomes just a stage in research and development of a later format or whether eutofont 2003�
format has long term usefulness as a font format can depend upon how eutofont 2003 format�
performs in application. However, the name eutofont 2003 format can be used to refer to the�
format described in this document unambiguously.�

The code points have been allocated within five groups.�

U+EAC0 .. U+EAC7 Codes affecting the whole font.�
U+EAC8 .. U+EACF Codes affecting a whole glyph.�
U+EAD0 .. U+EADF Codes affecting a whole contour.�
U+EAE0 .. U+EAEF Decimal data and minus sign.�
U+EAF0 .. U+EAFF Hexadecimal data.�

The eutofont format is designed to have the following registers which can have data entered into�
them.�

The ad register.�

This starts with a value of 0.�

The codes U+EAE0 .. U+EAE9 cause the value of ad to be multiplied by 10 and then have the�
appropriate value (0 .. 9) added.�

The ad_sign register.�

This starts with a value of ‘+’.�

The code U+EAEF causes the value of ad_sign to become ‘-’.�

The ah register.�

This starts with a value of 0.�

The codes U+EAF0 .. U+EAFF cause the value of ah to be multiplied by 16 and then have the�
appropriate value (0 .. 15) added.�

Various codes use the current values of ad and ad_sign or the current value of ah. Some are used�
to provide data directly and some set other eutofont variables.�

Some other codes use data from those other eutofont variables.�

Some other codes do not use data at all, but simply have an action.�

Using ad causes ad to be set to 0 and ad_sign to be set to ‘+’.�

Using ah causes ah to be set to 0.�

The other eutofont variables are x, y, r, g, b. The x and y variables are used by the commands to�
start a contour, place an on-curve point and place an off-curve point.�

Using any of x, y, r, g, b does not cause them to be reset.�

Mapping of a glyph can be carried out using either decimal or hexadecimal data. This is for the�
convenience of fontmakers, the mapping in the Java program is to a number, regardless of whether�
it was input as decimal or hexadecimal.�

The definition of a font in eutofont format�
The definition of a font is intended to start by setting a value for the top of the font in font units.�
The default value is 2048 font units. However, if the value used is 2048, explicit setting to 2048�
can be used if desired for aesthetic reasons. The lower limit of a font may be set. The default value�
is 0, and only 0 and negative values are valid. However, if the value used is 0, explicit setting to 0�
can be used if desired for aesthetic reasons.�

Next a glyph is started. Glyphs are numbered. Glyph 0 is the default glyph for an undefined�
character, glyph 1 is not used at present, glyph 2 is for the space character and font characters�
generally start at glyph 3. Glyphs should be numbered sequentially from 3 upwards. Applications�
should be tolerant over all glyphs not being numbered and should treat a glyph numbered as 0 as�
the next available glyph with an index number of at least 3 unless it is the first glyph received as�
that will be the glyph to use for an undefined glyph. This seems to imply the need for a flag in the�
application program to say whether an undefined glyph has already been received.�

Within a glyph the point size of the glyph may be specified. This is an option and may perhaps�
only rarely be used. In most fonts it will not be used.�

Within a glyph the width of the glyph needs to be specified.�

Within a glyph a collection of contours may be specified, each with its own individual colour. The�
eutofont format font does not use clockwise and counter clockwise glyphs as such, designating�
instead the colour of the contour. However, as fonts might be exported to other font formats,�
fontmakers might like to draw contours for background colour contours in a counter clockwise�
direction for maximum compatibility.�

Contours are not individually numbered within the definition of a eutofont format font.�

A contour must be closed and that closure is carried out when the end of contour character is used.�
There is no need to repeat the data for the start point of the contour in order to complete the�
contour.�

Within a glyph a glyph may be mapped to a code point. Mapping to a code point may be carried�
out anywhere within a glyph. It is a matter of style as to whether it is done at the start of the glyph�
definition or at the end. It could indeed be done anywhere within a glyph definition, even within�
a contour definition, yet fontmakers are asked to only map a glyph at just after the start or just�
before the end of a glyph definition and not within the definition of a contour.�

The colour information of contours�
Each contour needs to have colouring information. It is recommended that colouring information�
for a contour should specifically be included in a eutofont font file. However, applications should�
assume a contour to be in foreground colour unless otherwise stated. This is regarded as being�
helpful to a forgetful fontmaker, not as a reason to omit defining the colour of a contour specifically.�
Colouring of a contour may be anywhere within the defining of a contour. However it is�

recommended that colouring either takes place just after a contour is started or just before it is�
ended.�

Colouring may be in terms of background colour, foreground colour, first decoration colour, second�
decoration colour and so on with the colours actually used in display determined by the application�
which is using the font, or may be in explicit colours supplied by the font.�

When explicit colouring is being used the colour used is set using red, green, blue values. Thus�
the colour of each contour may be defined within the contour if so desired. However, where only�
one explicit colour is being used, that colour need not be defined within every contour as the colour�
will be retained within the r, g and b variables. However, where two or more explicit colours are�
being used the colours would need to be redefined every time a colour different from the last used�
colour is used.�

This produced a dilemma in the design process of the eutofont specification. Suppose that a font�
is being produced where the letters are each in foreground colour and each letter has decoration�
of holly and berries and it is desired to make the holly always explicitly green and the berries always�
explicitly red. As the system has been thus far explained, with each glyph using green and red the�
colours green and red would need to be redefined within each glyph. The glyph could define one�
or more green contours and one or more red contours so where more than one contour of any�
one explicit colour were being used within a glyph there would be an efficiency gained by the fact�
that explicit colour information is retained until it is explicitly changed. So a mechanism to add an�
internal palette of explicit colours would be helpful. However, it adds extra complexity into�
implementing the eutofont system in an application, bearing in mind that for some fonts the use�
of multiple coloured glyphs might not use explicit colours at all.�

On balance it was decided to add the feature of an internal palette of explicit colours. This is done�
using two code points.�

U+EADC, decimal 60124, DECIMAL SET CURRENT CONTOUR TO BE IN THE EXPLICIT INTERNAL PALETTE�
INDEXED ITEM ABSOLUTELY�

U+EADD, decimal 60125, DECIMAL SET EXPLICIT INTERNAL PALETTE INDEXED ITEM TO BE THE�
CURRENT COLOUR ABSOLUTELY�

The Explicit Internal Palette should use indexed items from 11 upwards. This is to avoid confusion.�
In principle, confusion should not occur as using 2 to colour a contour in first decoration colour uses�
U+EAD7, decimal 60119, DECIMAL SET CURRENT CONTOUR TO BE IN INDEXED PALETTE COLOUR�
whereas setting a contour to be coloured using a colour from the Explicit Internal Palette would use�
U+EADC DECIMAL SET CURRENT CONTOUR TO BE IN THE EXPLICIT INTERNAL PALETTE INDEXED ITEM�
ABSOLUTELY and the two palettes are different palettes anyway. However, using indexes from 11�
upwards for the Explicit Internal Palette will helpfully assist in avoiding mistakes in discussions and�
so on. A deliberate design decision was taken not to combine the two palettes into one run of�
index numbers from 0 upwards. Certainly 11 is a two-digit number and that will mean more�
characters being used, yet an application might have ten palette colours as there is at least one�
graphics package available which uses ten colours in its preset themed selections. Certainly, the�
two palettes are separate and so index numbers would not clash. Anyway it is a suggestion and�

fontmakers need not follow it if file size is an issue as the Explicit Internal Palette should be�
implemented as starting at index 0.�

The Explicit Internal Palette could be defined at the start of the font before any glyphs are defined,�
or colours could be defined the first time that they are used, as desired. However, it might be best�
to have a practice that where an explicit internal palette is being used that the colours are all�
defined before the first glyph is defined. This would, in effect, produce an explicit internal palette�
definition section near the start of the file.�

The explicit internal palette also has some preset colouring indicator codes. These are used to�
indicate such effects as metallic ink to the application. It is for the application to decide how to�
deal with such colouring information, for example using a flat colour or some special effect. The�
list is as follows.�

701 metallic ink gold�
702 metallic ink silver�
703 metallic ink copper�
704 metallic ink rhodium�
705 metallic ink turquoise�

Using the Quest text font to prepare a eutofont font�
In preparing a eutofont format font file as a Unicode plain text file, a fontmaker may enter the Private�
Use Area codes as he or she chooses. However, the Quest text font, (which is a TrueType font for�
use with ordinary text editors), from version 1.63, has glyphs for all of the code points mentioned�
below with the glyphs intended to be meaningful in the context of the eutofont specification. One�
point to note is that two stylized F and two stylized H augmentations are used in the glyphs. Where�
a stylized F or a stylized H is used, the choice of which version of each is used is just an artistic�
decision. Where the basic design of the glyph fills the area above the y axis of the glyph, the�
smaller version of the F or H is used: where the basic design of the glyph does not fill the area�
above the y axis of the glyph, the large version of the F or H is used. F is used to denote font and�
H to denote font hexadecimal. The H is only used on those glyphs related to hexadecimal numbers.�
For the avoidance of doubt, the glyphs used in the Quest text font are solely for fontmaking�
convenience, the symbols used are not used when the font is in use in an application. If someone�
is preparing a eutofont format font using a system other than a plain text editor in conjunction with�
the Quest text font, then the symbols used in the Quest text font are immaterial. The inclusion of�
those symbols in an illustration in this document is for the convenience of those readers who�
choose to use them.�

Supplementary note of 8 May 2004�
An error in the original published version of this document, namely stating “Using ad causes ad to�
be set to 0 and ad_sign to be set to ‘-’. “ has been corrected to “Using ad causes ad to be set to�
0 and ad_sign to be set to ‘+’. “ in this published version of the document.�

Here are the code point allocations.�

U+EAC0, decimal 60096, DECIMAL TOP OF FONT (value in font units, default is 2048)�
U+EAC1, decimal 60097, DECIMAL LOWER LEVEL OF FONT (value in font units, default is 0, only 0 and negative values�
valid)�

U+EAC8, decimal 60104, DECIMAL START A GLYPH DEFINITION�
U+EAC9, decimal 60105, DECIMAL POINT SIZE OF CURRENT GLYPH (optional, default is 0. 0 denotes all sizes)�
U+EACA, decimal 60106, DECIMAL WIDTH OF CURRENT GLYPH�

U+EACC, decimal 60108, DECIMAL MAP CURRENT GLYPH�
U+EACD, decimal 60109, HEXADECIMAL MAP CURRENT GLYPH�

U+EACF, decimal 60111, END OF DEFINITION OF CURRENT GLYPH�

U+EAD0, decimal 60112, DECIMAL FONT DATA X�
U+EAD1, decimal 60113, DECIMAL FONT DATA Y�

U+EAD4, decimal 60116, START A CONTOUR DEFINITION (uses current values of x and y)�
U+EAD5, decimal 60117, POINT ON THE CONTOUR (uses current values of x and y)�
U+EAD6, decimal 60118, POINT OFF THE CONTOUR (uses current values of x and y)�
U+EAD7, decimal 60119, DECIMAL SET CURRENT CONTOUR TO BE IN INDEXED PALETTE COLOUR�
 0 is background, 1 is foreground, 2, 3, 4 are decoration colours.�
 The colours are set in the application. Suggestions are red, green, blue for�
 decoration unless other colours are specifically selected within the application.�
 Use of -1 is recommended internally in an application if the colour is absolute, but is�
 not signalled using this code.�
U+EAD8, decimal 60120, SET CURRENT CONTOUR TO BE IN THE CURRENT COLOUR ABSOLUTELY�
U+EAD9, decimal 60121, DECIMAL RED COMPONENT OF CURRENT COLOUR�
U+EADA, decimal 60122, DECIMAL GREEN COMPONENT OF CURRENT COLOUR�
U+EADB, decimal 60123, DECIMAL BLUE COMPONENT OF CURRENT COLOUR�

U+EADC, decimal 60124, DECIMAL SET CURRENT CONTOUR TO BE IN THE EXPLICIT INTERNAL PALETTE INDEXED ITEM�
ABSOLUTELY�

U+EADD, decimal 60125, DECIMAL SET EXPLICIT INTERNAL PALETTE INDEXED ITEM TO BE THE CURRENT COLOUR�
ABSOLUTELY�

U+EADF, decimal 60127, END OF DEFINITION OF CURRENT CONTOUR�

U+EAE0, decimal 60128, FONT DECIMAL 0�
U+EAE1, decimal 60129, FONT DECIMAL 1�
U+EAE2, decimal 60130, FONT DECIMAL 2�
U+EAE3, decimal 60131, FONT DECIMAL 3�
U+EAE4, decimal 60132, FONT DECIMAL 4�
U+EAE5, decimal 60133, FONT DECIMAL 5�
U+EAE6, decimal 60134, FONT DECIMAL 6�
U+EAE7, decimal 60135, FONT DECIMAL 7�
U+EAE8, decimal 60136, FONT DECIMAL 8�
U+EAE9, decimal 60137, FONT DECIMAL 9�

U+EAEF, decimal 60143, FONT DECIMAL MINUS�

U+EAF0, decimal 60144, FONT HEXADECIMAL 0�
U+EAF1, decimal 60145, FONT HEXADECIMAL 1�
U+EAF2, decimal 60146, FONT HEXADECIMAL 2�

U+EAF3, decimal 60147, FONT HEXADECIMAL 3�
U+EAF4, decimal 60148, FONT HEXADECIMAL 4�
U+EAF5, decimal 60149, FONT HEXADECIMAL 5�
U+EAF6, decimal 60150, FONT HEXADECIMAL 6�
U+EAF7, decimal 60151, FONT HEXADECIMAL 7�
U+EAF8, decimal 60152, FONT HEXADECIMAL 8�
U+EAF9, decimal 60153, FONT HEXADECIMAL 9�
U+EAFA, decimal 60154, FONT HEXADECIMAL A�
U+EAFB, decimal 60155, FONT HEXADECIMAL B�
U+EAFC, decimal 60156, FONT HEXADECIMAL C�
U+EAFD, decimal 60157, FONT HEXADECIMAL D�
U+EAFE, decimal 60158, FONT HEXADECIMAL E�
U+EAFF, decimal 60159, FONT HEXADECIMAL F�

Here is a display of the authoring-time glyphs for the eutofont 2003 format which are included in�
the Quest text font from version 1.63 of the Quest text font. These symbols can be useful in�
preparing a eutofont format font within a plain text file.�

Here is an attempt to encode a small test font in eutofont format.�

The glyph designs are copied from the Quest text font.�

They are the undefined glyph and the glyphs for U+0020 SPACE, U+25A0 BLACK SQUARE and�
U+25A1 WHITE SQUARE.�

A diagram showing the attempt set in glyphs from the Quest text font version 1.63 follows on the�
next page.�

The attempt is displayed in nine blocks for convenience of explanation and so as to produce a clear�
diagram.�

The top of the font is 2048 font units, the lower level is -768 font units.�

U+EAE2 U+EAE0 U+EAE4 U+EAE8 U+EAC0 U+EAEF U+EAE7 U+EAE6 U+EAE8 U+EAC1�

Glyph 0, the undefined glyph, is 2048 font units wide. It has one contour. The contour has a start�
point of (0,0), an off-curve point at (0,2048), an on-curve point at (2048,2048), an on-curve point at�
(2048, 1024), an on-curve point at (1024,1024) and an on-curve point at (1024,0). The contour is�
in foreground colour.�

U+EAE0 U+EAC8 U+EAE2 U+EAE0 U+EAE4 U+EAE8 U+EACA U+EAE0 U+EAD0 U+EAE0 U+EAD1�
U+EAD4 U+EAE2 U+EAE0 U+EAE4 U+EAE8 U+EAD1 U+EAD6 U+EAE2 U+EAE0 U+EAE4 U+EAE8�
U+EAD0 U+EAD5 U+EAE1 U+EAE0 U+EAE2 U+EAE4 U+EAD1 U+EAD5�

U+EAE1 U+EAE0 U+EAE2 U+EAE4 U+EAD0 U+EAD5 U+EAD1 U+EAD5 U+EAE1 U+EAD7 U+EADF U+EACF�

Glyph 2, the space glyph, is 1024 font units wide. It has no contours. It is mapped to U+0020.�

U+EAE2 U+EAC8 U+EAE1 U+EAE0 U+EAE2 U+EAE4 U+EACA U+EAF2 U+EAF0 U+EACD U+EACF�

Glyph 3, a black square, is 2048 font units wide. It has one contour. The contour has a start point�
of (0,0), an on-curve point at (0,1792), an on-curve point at (1792,1792) and an on-curve point at�
(1792,0) and is coloured in foreground colour. The glyph is mapped to U+25A0.�

U+EAE3 U+EAC8 U+EAE2 U+EAE0 U+EAE4 U+EAE8 U+EACA U+EAE0 U+EAD0 U+EAE0 U+EAD1�
U+EAD4 U+EAE1 U+EAE7 U+EAE9 U+EAE2 U+EAD1 U+EAD5 U+EAE1 U+EAE7 U+EAE9 U+EAE2�
U+EAD0 U+EAD5 U+EAD1 U+EAD5 U+EAE1 U+EAD7 U+EADF�

U+EAF2 U+EAF5 U+EAFA U+EAF0 U+EACD U+EACF�

Glyph 4, a white square, is 2048 font units wide. It has two contours. The first contour has a start�
point of (0,0), an on-curve point at (0,1792), an on-curve point at (1792,1792) and an on-curve point�
at (1792,0) and is coloured in foreground colour. The second contour has a start point of (256,256),�
an on-curve point at (1536,256), an on-curve point at (1536,1536) and an on-curve point at�
(256,1536) and is coloured in background colour. The glyph is mapped to U+25A1.�

U+EAE4 U+EAC8 U+EAE2 U+EAE0 U+EAE4 U+EAE8 U+EACA U+EAE0 U+EAD0 U+EAE0 U+EAD1�
U+EAD4 U+EAE1 U+EAE7 U+EAE9 U+EAE2 U+EAD1 U+EAD5 U+EAE1 U+EAE7 U+EAE9 U+EAE2�
U+EAD0 U+EAD5 U+EAD1 U+EAD5 U+EAE1 U+EAD7 U+EADF�

U+EAE2 U+EAE5 U+EAE6 U+EAD0 U+EAE2 U+EAE5 U+EAE6 U+EAD1 U+EAD4 U+EAE1 U+EAE5�
U+EAE3 U+EAE6 U+EAD0 U+EAD5 U+EAE1 U+EAE5 U+EAE3 U+EAE6 U+EAD1 U+EAD5 U+EAE2�
U+EAE5 U+EAE6 U+EAD0 U+EAD5 U+EAE0 U+EAD7 U+EADF�

U+EAF2 U+EAF5 U+EAFA U+EAF1 U+EACD U+EACF�

