Unethical
Use of Rare and Threatened Plant and Animal Products in the Aroma Industry.
Copyright Tony Burfield May 2003.
(This article first appeard in Endanged Species Update May/June 2003 Vol 20(3), 97-106, and is reproduced here by kind permission of the editor, Saul Alarcon-Adams).
Abstract
Despite the existence of commodity
shortages in the aroma industry, production and marketing strategies that are
sustainable in the long-term are driven more by consumers and organizations
concerned about conservation than by raw material producers and resellers.
The poverty in which many indigenous peoples are submerged increases the
unsustainable use of natural materials. This
phenomenon is exacerbated by the unwillingness of large companies to pay fair
and equitable prices to these peoples when searching and later making profit of
active ingredients found in places such as the rainforest.
The author argues for a more ethical and responsible use of raw materials
in the aroma industry. He also
describes the origin, use and status of important animal and plant aromatic
items.
Uso no Etico de Productos Animales y Vegetales
Raros y en Peligro de Extinción en la Industria de Aromatizantes.
Resumen
A pesar de la
existencia de problemas de abasto de algunos productos en la industria de
compuestos aromáticos, las estrategias de producción y mercado sustentables a
largo plazo son impulsadas más por consumidores y organizaciones preocupados en
la conservación que por los productores y revendedores de materias primas. La
pobreza en la cual muchos pueblos indígenas están inmersos incrementa el uso
insostenible de materiales naturales. Este
fenómeno se empeora por la indisponibilidad de las grandes compañías para
pagar precios justos establecidos en términos de equidad a estas comunidades
por la búsqueda de ingredientes activos que se encuentran en lugares tales como
la selva tropical y por la posterior ganancia económica por el uso de estos
mismos productos. El autor
argumenta en favor de un uso mas ético y responsable de materias primas en la
industria de compuestos aromáticos. También
describe el origen, uso y estatus de algunos artículos aromáticos de origen
animal y vegetal importantes.
Utilisation
sans Scrupules des Produits de Plantes et Animaux Rares et Menacés dans
l'Industrie Aromatique
Résumé
Introduction
The essential oil and aromatic raw materials industry is failing to self-police itself with respect to conserving threatened plant and animal species. Commodity shortages and higher unit prices for certain items signal ever-increasing supply problems. Green policies and any semblance of ecological awareness with respect to these commodities often seem to originate more from the attitudes of consumers than via the raw materials producer and re-seller, in spite of the existent national and international laws restricting or forbidding trade in certain threatened species. It seems that some traders will only stop marketing these valuable commodities when prosecuted, legally prevented, shamed or pressurized into adopting more ecologically sound practices.
The World
Conservation Union has now classified 11,167 creatures and 5714 plants as facing
extinction (IUCN 2002). It is
calculated that loss of species is currently running up to 1000 times its
natural rate, thus it seems surely time to examine measures to help conservation
strategies for the planet (New Scientist 2002).
With this in mind, the October 2002 meeting of the United Nations
Convention on Trade in Endangered Species voted in favor of protection of a
further number of species, thus there is hope of tough international legislation
to preserve biodiversity (New Scientist 2002).
There is a "non-human"-centred argument in environmental ethics, which states that an individual species has an absolute right to exist. Introducing human's interests into the picture complicates the issue, especially where products from threatened species have associated uses as commodities, at which point ideological principles are sometimes overturned. For example, the 1973 Endangered Species Act in the United States, which is based on the assumption that each life form may prove valuable in non-predictable ways, and that each species is entitled to exist for its own sake, was initially welcomed by a majority of the public, but was later challenged by many people, when the habitat of a single unique species was seen to "get in the way" of major industrial development, affecting jobs and livelihoods, and maybe even affecting the way people might vote (Chadwick 1995). As another example, Pakenham (2002) devoted a complete chapter to the case of the eucalyptus forests in Australia. These forests contained enormous Eucalyptus regnans trees 350-400 feet high, a wonder in themselves! However, the cutting down of state-owned eucalyptus forests in the Yarra range north of Melbourne has monetarily benefited Australian taxpayers. It is hard to see that conservation can be perceived as effective and ongoing, when local governments adopt such policies of such seemingly negative ecological value.
Biodiversity Conservation, indigenous peoples and the aroma industry
Slash and burn was practiced for hundreds of years in the tropics in a process of cultivation and fallow rotation (and sometimes management succession) without a great impact in the rainforest (Brookfield and Padoch 1994; Tomich et al. 1998). However, population growth and pressure from big corporations have decreased the amount of land available, and the fallow period has shortened with the subsequent degradation of the land (Tomich et al. 1998). The intensification of slash and burn practices lead to desertification, and agriculture and housing needs intrude more and more on former forest areas. Slash and burn policies of migrating agricultural practices may affect the pH of the soil, change the viable seed count and soil microflora, damage the root matt structure, and may lead to the degradation of forest areas. Indeed the poverty of the indigenous peoples can make huge demands on the forest reserves, and this effect may be comparable or larger than the effects of logging or other destructive forces.
Another cause of
the extinction of species is the gathering of threatened organisms.
One of the arguments for non-interventionist policies relates to a
fundamental right of peoples to use plants and herbs for religious, medicinal or
ritual use. In fact, endemic
peoples can easily view the imposition of ecologically reasoned restrictions on
these practices as a form of Western scientific imperialism.
I am sympathetic to this viewpoint, and would always seek to prevent the
more serious threat of commercial exploitation rather than interfere with a more
"legitimate" ethnic use, provided that this use does not continue to
seriously endanger the species in question, for instance, by the use of
sustainable practices to ensure the long-term preservation of natural resources.
Sustainable forest development is defined by the International Tropical
Timber Organization as "the process of managing permanent forest land to
achieve one or more specific objects of management with regard to the production
of a continuous flow of desired forest products and services without undue
reduction in its inherent values and future productivity, and without undue
desirable effects on the physical and social environment” (Mankin 1998).
But despite the
fact that the need for as sustainable management is recognized, indigenous
peoples generally gain absolutely nothing from large companies searching for new
pharmaceuticals, active ingredients for cosmetics or drugs (e.g., curare and
quinine), and agrochemicals in environments such as the rainforest (Prance
1998). No establishment mechanisms
exist to reward local communities for the conservation of diversity, and the
growth of forest conservation schemes has historically shown scant regard for
the ways of indigenous peoples.
It
is not all doom and gloom however. Panaia et al. (2000) report that one single
plant of the critically endangered Symonanthus bancroftii plant was
discovered in Ardath in Western Australia, and a recovery program using in
vitro micropropagation techniques was started via the resources of
Department of Conservation and Land Management (CALM) and the Botanic Gardens
and Parks Authority of Western Australia. The
plant has now a less precarious outlook, illustrating the role of tissue
culture, one of the ex-situ measures proving useful in conserving rare and
threatened species.
The trend
towards exotic botanical extracts as actives in cosmetic products is also a
major development and has spawned some interesting associations, such as those
between the French Conservatory of Specialized Botanical Collections and
producing companies in Madagascar and Brazil.
Charges of bioethnic plundering in exotic materials for cosmetics
generally are offset by the fact that indigenous peoples may gain monetarily
from these exploits. But ethno-botany is now such a buzz-word across the
cosmetic world, thus it is hard to find out if there is any effective monitoring
for the majority of these raw materials, and from personal experience, complete
ignorance of the conservation status of these commodities items would seem to be
the norm amongst the majority of technical staff of many leading cosmetic
companies. Further, it is possible
that extensive usage of these exotic ingredients may further damage the fragile
ecosystems from whence they came.
What action can
we in the aroma world take to contribute to conserving biological diversity? One
possible way is not to formulate with, or trade in commodities which origin is a
threatened species, until we are far surer that truly sustainable production
methods are in place. Dialogue to
discuss how this might be done, the drawbacks of imposed monoculture on cleared
forest land, and policies which contribute to species succession is welcomed.
Some of these exploited aromatic items are listed below, although the
list is far from being comprehensive.
Animal Products
1. Civet. Civet products were used in less enlightened times in perfumery for their animalic notes, finding use in orientals, heavy florals and chypres. Civet paste is obtained from squeezing or scraping the anal glands of the African civet cat Civetticus civetta (sometimes classified as Viverra civetta), the Indian civet Viverra zibetha (from India, Indonesia and Malaysia), the Lesser Indian civet (also known as the Chinese civet) Viverricula indica (East and South China) and other civet species. Viverra civettina (India), Viverra zibetha (India) and Viverricula indica (India) are listed under Appendix III of the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) (CITES 2003).
De-Sheng (1986)
wrote a review article of the civet cat and presented detailed GC-Mass
Spectrometery data on the composition of steam micro-distillation-extraction
volatiles from civet secretions obtained from the Chinese Civet Viverricula
indica. Yingkang (1991) described civet paste collection from Hangzou
Zoological Garden in China and estimated an annual production of 12 kg of civet
paste per year from a one-hectare civet farm operated by the zoo. Farms also operate in Ethiopia, Kenya, Congo, Guinea, Senegal
and India. Petitdidier (1986) glowingly reported on a visit to Addis Abbaba
Research Institute, which controlled the civet quality output from 105 Ethiopian
farms. A similar kind of article
would be hard to find these days, reflecting how attitudes have changed.
2. Musk.
Musk grains/pods are obtained from the preputial glands of the musk deer
(Moschus spp.). Geist (1999)
argues that these timid creatures are really tragulids, the similarity to deer
only occurring by convergent evolution. A
principle difference is that tragulids have fewer exocrine glands than
"real" deer. Example of
musk deer species include Moschus berezovskii found in Southern China and
Northern Vietnam, Moschus chrysoagaster found in India, and
Moschus moschiferus found in China, Mongolia, Himalayas and Korea.
Moschus spp. populations of
Afghanistan, Bhutan, India, Myanmar, Nepal and Pakistan are listed under
Appendix I of CITES, while other populations are included in Appendix II (CITES
2003).
Animal musks
have had a long history of use in perfumery.
Zhong and Hui (1996) reported that China formerly had 90% of the world
"musk deer resources," but that deer populations had reduced from 2.5
million on the 1960's to 100,000 in 1996. Green
(1986, 1989) and Wemmer (1998) noted that the economic viability of musk
harvesting from either free-range or captive musk deer has not been evaluated.
Only small amounts of musk are nowadays used in perfumery - the largest
consumers of musk products are China (where various musk qualities are used in
traditional medicine) and Japan. Morita
(1992) reported that musk is no longer an ingredient of modern Japanese incense.
Traditional musk
qualities used in perfumery included: a) musk tonquin from Moschus
moschiferus deer in Tibet and China; b) musk cabardine from cabardine deer Moschus
sibiricus and Moschus altaicus; c) musk Yunnan of different physical
appearance from tonquin; d) musk Bengal (maybe also known Assam musk), usually
regarded as inferior; e) musk Siberian from the Shansi mountain regions; and f)
musk of Boukharie.
3. Ambergris.
Ambergris is a pathological exudate from the sperm whale Physeter
macrocephalus and only occurs in approximately 1% of the population. The
disease is caused by exposure to sunlight and seawater producing this
formerly used perfumery material. Physeter spp., amongst other whales,
are listed under Appendix I of CITES (CITES 2003). Rice DW (2002) of the
National Maritime Mammal Laboratory, Seattle, pointed out, that contrary to the
widely held belief that ambergris masses may be found floating in the sea or
washed up on shores, harvesting therefore posing no threat to whale viability,
ambergris is hardly ever found on beaches but is mainly recovered from whale
carcasses
4. Castoreum.
Castoreum qualities are ethylic extracts of the accumulated dried
material collected via secretory
glands in the abdominal pouch of the Siberian
beaver Castor fiber and the Canadian beaver C. canadensis living
in Alaska, Canada and Siberia. Russian and Canadian commercial products were available in
former times (e.g., from the Hudson Bay Company), and at the present time
castoreum products are still available from Internet traders and certain
perfumery companies (e.g., some in France).
Castoreum was once used in perfumery to give leathery animal notes to
chypres and to other perfumes. In
spite of progress in understanding the chemical composition of castoreum, no
synthetic replacement or reconstitution comes close to reproducing the
in-perfume effects produced by the authentic material.
5. Muskrat.
Although the species is not threatened, products such as musk zibata were
formerly produced from the muskrat Ondatra zibethicus, which lives
on the Louisiana marshlands. Hall (1981) reported that in North America
muskrat pelts are the most valuable fur pelts in the trapping trade.
The perfumery use of muskrat products would nowadays also be regarded as
non-ethical.
There are other
"animal" products that are not similarly universally regarded as
unethical commodities (e.g., beeswax absolute obtained via alcoholic extract of
beeswax). The official line is that
respectable international perfumery companies do not trade in animal raw
materials, as the trade is regarded as unethical, if not actually illegal under
CITES agreements. It does not take the trainee in perfumery too long to realize
that certain identifiable perfumery companies do not adhere to these criteria,
although they risk the attentions of environmentalists and animal welfare groups
who might vigorously pursue these miscreants.
An interesting
development is the reported banning of the import by the Chinese government on
March 2002 of products from Europe (that includes members and non-members of the
European Union), Japan and Oman, containing or suspected of containing animal
derivatives (Parfums Cosmétiques
Actualités 2002). It will be
interesting to see if the ban just applies to some cosmetic materials -
including fragrance ingredients - or also applies to musk and other ingredients
imported for use in traditional Chinese medicines.
Plant Products
1. Orchid oils. The three commercially cultivated species of the vanilla plant, Vanilla planifolia (Bourbon or Indonesian vanilla), V. tahitensis (Tahitian vanilla), and V. pompona (Guadeloupe vanilla; vanillons; W. Indian vanilla) are not included in this category. Orchids are already sufficiently rare in many European countries to have protected status, and the family Orchidaceae is listed under Appendix II of CITES and Annex B of Regulation (EC) 338/97 (CITES 2003). Some examples of threatened species still use are the ladies slipper Cypripedium parviflorum var. pubescens, which is used in herbal medicine and is listed in the British Herbal Pharmacopoeia 1983, and Ophyris insectifera used in "salep", an ingredient in Turkish delight and ice cream. McGriffin (2000) proposed self-regulatory initiatives to refrain from trading in wild-harvested ladies slipper. He suggested that these initiatives should be put into practice by the herbal industry, all American Herbal Products Association members, and all other individuals and businesses in the horticultural and herb trade.
Many natural
perfumes produced by many orchid species are currently being researched by
leading perfumery companies (Kaiser 1993).
Pain (2001) described the plant hunting for new perfumes including orchid
perfumes in rain forest areas (e.g., Madagascar) by experts from one of the
world’s largest fragrance companies. Current
interest by the media is further reflected in S. O'Connell's article (2001)
reporting on the work of Josef Limacher, a perfume hunter working on orchid
scents in locations in Brazil. Kaiser (1993) presented an impressive academic account of the
chemistry of natural orchid scents from many parts of the world in his
fabulously illustrated book. Although
the threat of mass exploitation of orchid species is unlikely, close monitoring
to protect individual habitats of these beautiful and irreplaceable plants is
desirable.
2. Mountain
tobacco. Extracts, concretes,
essential oils, the dried roots, dried whole plant and dried flowers of Arnica
montana are commercially offered, in spite of declining plant populations.
Due to over-exploitation, A. montana is listed under Annex D of the CoE
Regulations (EC) No. 338/97 and under Annex V of the EU Habitats, Fauna and
Flora Directive (EUROPA 2003). A
rare drug, the tincture of arnica flower oil from the capitulum's of A.montana,
has previously achieved pharmaceutical status in the British Pharmaceutical
Codex of 1949. The herb and its products has similarly been official in many
National Pharmacopoeias (e.g., Austria, France, Germany, Switzerland and it is
mentioned in the British Herbal Pharmacopoeia of 1983). The market for the dried
flowers is believed to be 50 tons per annum and this product is almost totally
derived from wild harvesting from Spain and Romania.
An excellent review of the status of A. montana, including the
position with respect both to legal and illegal harvesting in Spain, is
described by Lange (1998).
3. Costus. Products
such as extracts, concretes, and essential oils are obtained from Saussurea
lappa (also known as Saussurea
costus). This species is
sometimes mistaken with the herbal plant Costus speciosus. Saussurea
lappa plants, known as kuth in Hindi and in the herb trade, are grown in
Kashmir, Sikkim and other areas of the Himalayas, and in Southwestern China. The plant has become endangered and export is banned, the
species being included in Appendix I of CITES (CITES 2003). S. lappa's qualities are better known in perfumery as
costus absolute, costus oil etc. The
plant grows wild, mainly in Jammu and Kashmir (specifically in the Kishenganga
and Chenab valleys), but is also cultivated in Kashmir and Lahul.
Roots of the plant are used in Ayurvedic, Unani, Siddha and Tibetan
medicinal systems. The oil was
formerly used in high-class perfumery in small quantities to impart animalic and
sebaceous notes, and some would say coupled with orris-like effects. Up to 12
tons of raw material per year are exported from northwest districts of India, in
spite of their threatened status, and not being permitted in perfumes because of
problems of dermal sensitization associated with sesquiterpene lactones and
other sensitizers in costus products. Incorporation
into perfumes is against the International Fragrance Research Association
Standards, unless specific commercial grades offered can be shown to be
non-sensitizing.
Additional List of Rare and Threatened Species
The following are aroma materials from species that I believe to be rare, very rare or threatened in their natural habitats. Some aromatic raw material users may be anxious that the conservation ideal should ensure that not only the morphologically distinct forms are preserved, but also the conservation of chemotypes is given equal weighting.
1. Rosewood oil.
Oil from the wood of Aniba rosaedora, A. amazonica, A. parviflora and
other Aniba species and varieties, is distilled to produce "bois de
rose" or Rosewood oil. The
present production is mainly from Brazil (the pure oil is only shipped out from
Manaus), although formerly was produced also in French Guiana, Surinam and Peru. Time is running out for this important raw material.
Replanting deals (i.e. guaranteeing tree replantation with trade
purchases) are commendable in some respects, but will make little impact in the
short term due to the long maturation period of the trees.
Loss of germ plasm diversity and narrowing of the genetic base is
believed to have already occurred through tree over-exploitation to satisfy the
demand for essential oil, although efforts to create a germ plasm collection are
now afoot. Some encouraging trials
for young trees indicate better growth characteristics in cleared areas compared
to the relative failure of poly-tunnel trials.
The Faculdade de Ciensias Agrarias
do Para at Belem, Brazil recently identified specific evaluation needs for
formal cultivation, including the selection of superior germ plasm, economic
studies for production of wood and leaf oils, and optimization management
regimes for short-rotation harvesting of trunk wood and leaves.
Major purchasers of Rosewood oil to date are believed to have been local
outposts of fragrance sector multinationals, who have taken up to 100 tons per
annum of oil since the eighties (the present output is believed to be closer to
30 tons). This is in contrast to the Brazilian situation of the nineteen
sixties, where fifty or so Brazilian distilleries provided 500 tons per year of
oil (Ohashi 1997). A review article
by S. Sheppard-Hanger and the author, on possible substitutes for Rosewood oil
in Aromatherapy, has just been published (Burfield & Sheppard-Hanger 2003).
Peruvian
Rosewood oil from "sustainably grown" Ocotea caudata is also
being sold into the essential oils market.
The history of exploitation of Ocotea species has not been good up
to now. The over-exploitation of
Brazilian Sassafras O. pretosia and the valuable South African timber
tree O. bullata has been
such that the latter is a protected species.
So much felling of O. pretosia in Santa Caterina forests
of Brazil has occurred in the last few decades in order to produce
Brazilian Sassafras oil that now the transport distances to the distillery are
relatively great, and the oil is starting to be uneconomic to produce. Since O.
cymbarum is often confused with O. pretosia has also suffered
reduction in numbers from indiscriminate felling. Many Ocotea species are slow-growing species and may
take up to forty years to mature. If
exploitation becomes scaled up the future of O. caudata may be uncertain,
although some oil customers dislike the inferior odour profile (pine-oil
disinfectant like) of some batches of the oil, which makes the increase of O.
caudata exploitation very unlikely.
2. Amyris oil.
Although there is no study that I am aware of to corroborate this
prediction, I believe that Amyris balsamifera is at risk of becoming
extinct in its natural habitat, the Caribbean and Gulf of Mexico, in less than
ten years due to over-exploitation. The
oil is not greatly valued in perfumery but rather has found employment as an
extender of other oils, or in cheap soap perfumes.
3. Sandalwood
oil. Possibly originally introduced
from the Timor islands, the parasitic sandalwood trees (Santalum
species)
such as S. freycinetianum (Lanal sandalwood) and S. album (East
Indian Sandalwood) became endemic to Southwest India, often hiding deep in the
Southern forests. According to
Sahni (2000) some species of Santalum were perhaps spread there via birds
following their establishment by man on the outskirts of forests or nearby
villages. Sahni (2000) also
estimated that sandalwoods have been indigenous to parts of India for 23
centuries. There is some evidence
that essential oil formation in the heartwood is optimal where trees are grown
at between 600 to 900 m. Due to
over-exploitation, East Indian and Indonesian oils from S. album are not
freely available, although some limited production of East Indian sandalwood is
taking place. The market price of East Indian sandalwood at the time of writing
is £425 per kilo! The production has partly been in the control of the Madras
and Mysore state governments, who have attempted to prevent the unauthorized
smuggling of oil. However, illegal
sandalwood oil has been commonly offered in the oil dealing trade, and in recent
years, the industry has largely turned its back and pretended not to notice the
practice, and now we may be paying the price.
My best guess is that there are possibly less than 130,000 hectares of S.
album trees in the whole of India. In
Karataka and Tamil Nadu forests trees grow at elevations of up to 1400 m and
there is some evidence that oil formation in the heartwood is optimal where
trees are grown at between 600 to 900 m. It
is probable that 75% of India's sandalwood output comes from the forests of
Karnataka, where extensive replanting trials have been carried out, although the
market sourcing for this commodity may now focus increasingly on Papua New
Guinea. Many replantings in other
districts of India have produced viable plants, but with no oil content. Rai (1999) described the plantation techniques used for
raising sandalwood from seeds, and container raised seedlings.
Many attempts have resulted in failure from insufficient knowledge of the
host-parasite relationship, or from mismanagement (e.g., deaths by dehydration,
animal scavenging, or human-caused destruction).
Trees are quite
susceptible to disease, especially to the mycoplasmal spike disease, which
affects the principal forests (see Nayar (1988) for a detailed review of spike
disease). Mineral and hydrational
requirements are provided by the hot, thus spike disease is thought to be aided
by the selection of inappropriate hosts for the sandalwood tree.
The tree will normally die within 3 years of infection.
There is no
national or international genetic germ plasm resource or collection of
sandalwoods in existence anywhere. Further,
full maturity for trees may take 60-80 years. All of these factors coupled with
over-exploitation are putting pressure on other Santalum species from
which replacement sandalwood oils are being produced. For instance, S. austrocaledonicum (sandalwood
oil vanuata) and S. yasi (Fiji, Tonga) have been so exploited, that
numbers of these species are down to a few trees.
S. fernandezianum was exploited since 1624 for its valuable
sweet-scented wood, and according to Lucas and Synge (1978) the last specimen of
this species was last seen alive by Skottsberg in 1908.
The status of tree numbers of S. insulare (French Polynesia), S.
macgregorii (Papua New Guinea), and S. ellipticum (Hawaii) also needs
monitoring.
Although East
Indian sandalwood from S. album reached protected species status in 1995,
most of the aroma industry trade press has virtually ignored the topic.
Soap, Perfumery and Cosmetics (2002) highlighted the research on the
Australian sandalwood S. spicatum extract by the Institute of the
Pharmaceutical Chemistry in Vienna, in conjunction with an Australian Sandalwood
producer (Mt. Romance). The article
is largely devoted to extol the virtues of S. spicatum "oil”,
apparently via felled trees from a 1.6 km2 area.
Unfortunately the article fails to distinguish the differences in
compositional and odor properties between East Indian sandalwood oil and the
Australian Sandalwood extract. Webb (2000) described the solvent extract
procedure details, which is followed by co-distillation as utilized by Mt.
Romance in the preparation of Australian Sandalwood extract.
4. Jatamansi
oil. Jatamansi oil is
extracted from Nardostachys jatamansi, which is found in the Eastern
Himalayas, Nepal, Bhutan and Sikkim. The
once abundant herbal plants described by early botanists (: Gammie A. 1894) have
been virtually stripped from the hillsides by herb gatherers in many places now,
so the plant is becoming extremely scarce and the perennial only occurs in a few
Himalayan valleys, typically at heights of between 3600-4800 m, or even at the
higher elevations. Amatya and
Sthapit (1994) expressed concern about over-exploitation of the species, calling
for increased levels of cultivation. The
authors also remarked that although export of the herb itself was not allowed,
there is no restriction on exporting oleoresin and essential oil, and the export
volumes of these products are often inaccurately reported, to avoid payment of
government tax. The trading of N.
jatamansi only reflects the high levels of commercial exploitation that
still occurs with other Himalayan herbs like Aconitum ferox, Picrorhiza
kurrooa and Swertia chirata. Apart
from S. chirata, these species are disappearing fast. The rhizome from N. jatamansi is used in Ayurvedic
medicine for the treatment of hysteria and other nervous illnesses.
The larger plant N. grandiflora which occurs in the same regions
that N. jatamansi does, achieved CITES Appendix II listing in July 2000,
together with Picrorhiza kurrooa. P.
kurrooa is a tonic herb and possibly the most well-recognized
Himalayan medicinal herb. It is
interesting to note that N. grandiflora is said to be often co-gathered
with Valeriana wallichi according to Traffic International (1999) and
that published chemical compositions of essential oils from these species are
similar.
5. Chaulmoogra
oils. Chaulmoogra oils are
extracted from Hydnocarpus species from some regions in India (especially
the Western Ghats and Karnataka). Interestingly,
chaulmoogra oils are fixed oils, often being solid in temperate European
climates, but with a history of being traded by the essential oil industry.
Their traditional indigenous medicinal use against leprosy has been
largely superseded by modern pharmaceutical drugs.
Biswas (1956) noted that species of chaulmoogra were ruthlessly and
crudely collected and sold outside Nepal, in addition to other species such as
chirata (Swertia chirata), and kuth (Saussurea lappa).
Since then exploitation has further the abundance of the species. Shankar
and Majundar (1997) quoted the Foundation for Revitalization of Local Health
Traditions Research Department, which published a first Red Data List of
threatened South Indian medicinal plants, in which the status of H.
macrocarpa was listed as vulnerable. CIMAP (1997) reported that H.
pentadra is facing genetic errosion and that in general Hydnocarpus
species are in decline due to habitat destruction.
6. Gentian.
Many of the 300 or so Gentiana
species remain very rare or threatened (IUCN 2002). Gentiana extracts
have traditionally been used in medicines and flavorings, but species such as G.
tibetica was formerly used in Tibetan medicinal systems may be so rare that
substitutions may have to be made. Kletter
and Kriechbaum (2001) note that G. tibetica is often confused with G.
crassicaulis and G. robusta, and it may be that plant gatherers are
simply looking in the wrong area for the species.
The species may occur in Nepal but is confined to southeast Xizang,
Bhutan, Sikkim at heights between 2100 to 4200 m. Kletter and Kriechbaum (2001)
further recommended that gathering of all three species should never exceed 50%
of the total local population of plants, and should only occur during two years
in a row followed by one year without harvest.
G. lutea is
listed in the Red Book Data listings for Bosnia, Romania, Portugal, Bulgaria,
Albania, Germany, Czech Republic, Ukraine and Poland.
It is commonly used as a source material in the preparation of gentian
absolute for the perfumery trade, and as a bittering agent in alcoholic
beverages, but the more economically important use for the dried roots and
rhizome of the plant is to produce bitters to stimulate the digestive system.
Lange (1998) estimated the demand for dried roots as being 1500 tons per
annum, mainly derived from gathering from the wild in France, Spain, Turkey,
Bavaria, Albania and Romania. He
also noted that wild harvesting of G. lutea in Spain proceeds in
contravention of existing legislation.
7. Kenyan
cedarwood oil. Known as the
East Africa pencil cedar tree, Juniperus procea reaches up to 30 m
and is found in parts of Ethiopia and central Kenya at 1000 to 3000 m.
An oil traded as Kenyan cedarwood oil was formerly produced from
distillation of the chipped wood, and was commercially available as a common
perfumery raw material up to the mid-eighties.
By 1986, J. procera was included in the FAO listing of endangered
tree and shrub species and provenances (FAO 1986). Ciesla (2002) discussed
reasons for the decline of the species, which include the effect of possible
pathogens, drying out of forests and human factors such as heavy overgrazing.
The decline lead to the oil production cessation in Africa, and the oil
has disappeared from the raw material inventories of perfumery companies.
The tree has been introduced into parts of India (the Nilgiris), and
waste wood from trees cut down for furniture making may be distilled on a very
limited scale to produce oil for local use.
8. Agarwood.
Agarwood (also known as aloeswood) is extracted from Aquilaria &
Gonystylus spp.,
and A. malaccensis and other
Aquilaria species grow in Malaysia and Indonesia and are becoming
rare because of the great demand for
infected sections of fragrant wood (agaru),
which fetch a great price. A. crassna is listed as endangered by the
Vietnamese government and A. malaccensis is protected under CITES.
Agarwood trees are felled indiscriminately by roving teams of agaru
hunters who search Southeast Asian territories for this very valuable material,
in places in which the species are not known to occur.
Exploitation from incense makers and other commercial users threaten the
continued future sustainability of A. agallocha trees (which some workers
regard as synonymous with A.
malaccensis) from Cambodia, Vietnam and Thailand (Barden et. al. 2003; and
CITES Newsletter 2000). A.
malaccensis is mentioned amongst 65 listed Indian medicinal and aromatic
plants facing genetic erosion by CIMAP (1997), a list that also includes Gentiana
kurroo, Sausaurea costus, Hedychium spicatum, Nardostaschys
grandiflora, Gaultheria procumbens and Jurinea dolomiaea.
Agarwood formation is maximal in trees older than 25 years old,
peaking in trees older than 50 years, thus even though the Department of Forests
in Arunachal Pradesh has developed large Aquilaria plantations, these
measures may not affect the cutting and illegal exporting of this product.
Attempts and trials for artificial resin inducement and biotechnological
processes for agaru production are planned to be covered at a First
International Agarwood Conference which will take place in Vietnam on November
2003. The objective of this
conference is to lay the groundwork for collaborative efforts towards preventing
Aquilaria trees becoming extinct in the wild.
Momberg et al. (2000) provide an insight into the social and ethical
issues surrounding the bioprospecting “rush” for agaru in the Kayan
Mentarang National Park in East Kalimantan, Indonesia. The authors report for
example that the ‘nineties boom in agaru collecting featured non-indigenous
teams flying agaru out by aircraft. Eventually government restrictions stopped
this activity, but only at the point when the agaru forest reserves were
exhausted; inexperienced outside collectors felling every Aquilaria tree
(instead of just infected trees) have added to a worsening situation.
9. Greater
wormwood oil. This product is derived from Artemisia gracilis, a now rare
European alpine plant growing at elevations of 2400-3500 m. The oil was formerly
used as a flavoring ingredient in alcoholic beverages and to produce the alpine
liqueur Genipy.
10. Anise
scented myrtle oil. This oil is
traditionally associated with Australia (North East part of New South Wales,
specifically the Bellinger and Nambucca valleys).
Anise scented myrtle oil is obtained from Backhousia anisata, a
rare tree rare that grows up to 25 m, although plants are always smaller in
cultivation. Briggs and Leigh (1995) list B. anisata as a rare or
threatened plant, with a geographic range in Australia of less than 100 km.
More than 1000 trees of the species exist in natural reserves and Briggs
and Leigh (1995) consider the species' status as adequate inside the reserves.
Annual production of leaf or branch or bark oil production is not known,
although is believed to be minute. Some anecdotal reports state that leaf oils
produced from the cultivated plants are inferior in odor profile to wild
harvested leaves. The spicy leaves have been used in the Australian bush tucker
industry.
11. Hinoki wood
oil. Since 1982 the Japanese government has protected Chamaecyparis obtusa
where the oil is extracted from, and has only allowed the use of trees
that have died naturally, or which have been recycled from the re-building of
temples. Therefore the oil is
produced from the steam distillation of the chipped wood and sawing wastes of
the Hinoki tree legally obtained, and buyers should seek documented proof of
legality if buying from a Japanese source.
There may now also be some limited Chinese production of this oil also.
12. Havozo tree
oil. The practice of bark
distillation, which produces an oil that smells strongly of aniseed and contains
80-97% methyl chavicol as well as limonene, anethole, and linalol, is
threatening the survival of Ravensara anisata, the Madagascan tree from
which the oil is extracted. There
are some signs that this practice is being discouraged and better forestry
management is being put into practice (Medicinal Plant Conservation 1997).
13. Siam Wood
oil. Fokiena hodginsi, first
reported in 1908 and now becoming very rare, is used to produce
this oil. The oil is rarely
encountered commercially.
14. Mulanje
cedarwood. Whyte
(1892) reported that forest fires were threatening the mulanje cedarwood Widdringtonia
whyte. However, this African
species survived in a ten-mile area until it was replanted from Mulanje
Mountains Forest Reserve in the 1960’s to former Nyasaland, Tanganyika and
Kenya. Now over-used as timber,
sawdust is collected from timber-yards and distilled to obtain oil for local
use.
15. Origanum oils.
Several individual species of Origanum such as O. barygyli from
Syria and O. dictamus and O. vetter from Greece are rare or
threatened. Several institutions
have collected the genetic resources of the genus, which reside in a number of
gene banks, and private collections across the world.
16. Himalayan
cedarwood oil. Cedrus deodara
grows on the Himalayan slopes of northern India, Afghanistan and Pakistan, at
elevations between 1650 and 2400 m, and has extensively been used in India for
building, furniture and railway sleepers. Felled
trees are floated down the rivers in the Himalayas to the plains.
Oil production is down from former levels of 20 tons, to approx 1 ton per
year. The species is listed as
threatened (Farjon et al. 1993), and according to Sahni (2000) the tree is the
remaining habitat for the threatened and spectacular Western Tragopan (Tragopan
melanocephalus) in parts of Kashmir, Himachal Pradesh and Pakistan.
The oil is widely used in aromatherapy, but little used in Western
perfumery where Virginian cedarwood oil Virginia from Juniperus virginiana
L. is often preferred.
17.
Cedrus atlantica commodities. The
tree is found at an elevation of 1400-2500 m growing on several types of soil in
133,653 hectares of cedar forest in the Moroccan Middle Atlas, Rif Central and
Grand Atlas Oriental and Middle Atlas Oriental mountains (Mardaga 1999). While
cedarwood Atlas trees are well conserved in specific protected areas, the
ecosystem is very fragile, and often the margins are subject to degradation by
erosion, demineralization, dehydration, and desertification, occasionally
resulting in areas of complete desolation, in spite of heroic attempts by the
Moroccan authorities to maintain them. Lawrence
(1985) reported that the production of cedarwood Atlas oil was 7 tons, but the
availability in recent years has been more limited, probably now to around 1 ton
per annum.
18. Thymus
oil. Of the 350
distinguishable species of Thymus, the threatened species include T.
moroderi, T. baeticus and T. zygis subsp. gracilis (Blanco and
Breaux 1997; Lange 1998). Although
licensed collection may put the brake on international trade on certain Thymus
traded items, the use of Thymus species for essential oil
distillation within Spain is not monitored, and so the true situation is not
clearly known (Lange 1998).
19. Buchu oils. Agathosma
betulina and A. crenulata leaves are steam-distilled to produce the
oil. The plants have long been used
in traditional South American ethnic medicine, but a major use for the powerful
smelling steam-distilled oil is in flavorings and perfumery to produce a fruity
berry (especially blackberry) note. Its
diminishing presence in the wild has been the subject of several recent
articles. For instance Hoegler
(2000) mentioned the poor gathering practices in the face of increased demand
that has partially been responsible for the demise of the species, and mentioned
the work of Agribusiness in Sustainable African plant Products (A-SNAPP) which
has targeted the plant for sustainable development initiatives.
African farmers demanded price rises of 30% for buchu oil, a move known
as "holding the market to ransom" (Parfums Cosmétiques Actualités
2003).
20. Cinnamomum
oils. At the time of writing, the
Chinese authorities have seemingly introducing a ban on tree felling of certain
species including Cinnamomum because of concerns related to climate
change. Ho leaf & wood oils
from species such as C. camphora L. var. linaloolifera and C.
camphora Sieb var. glavescens Hayata, are subject to considerable
price rises and supply problems. Zhu
et al. (1994) had previously warned of potential problems of exhaustion of Cinnamomum
species reserves in China, as no policy of tree replanting currently existed.
The future sustainability of this commodity is unforeseeable at present.
Another Cinnamomum species, Cinnamomum tamala, is listed by CIMAP
1997 as suffering from over exploitation and habitat destruction in India, such
that plant populations are considerably reduced so that it is “nearly
threatened”.
Just because some aromatic
materials are no longer offered, it does not necessarily mean that they are
threatened. Unavailable products
could be divided into various groups: a) materials no longer available in former
quantity due to lack of demand (e.g., Backhousia citriodora oil for many
years, after the advent of cheap commercially available synthetic citral, and
now enjoying modest comeback due to interest in natural perfumery); b) materials
which have slipped from fashionable use, but can be
obtained with difficulty (e.g., reseda absolute from Reseda odorata,
woodruff absolute from Galium odorata); c) materials which go short
because of huge demand (e.g., vanilla oleoresin from Vanilla spp.); d)
materials which become temporarily short due to climatic or political
difficulties (e.g., geranium oil Chinese from Pelargonium graveolens in
2002).
Acknowledgments
The
author would like to thank Saul Alarcon-Adams for his direction and input to
this article.
Literature Cited
Amatya G. and Sthapit V.M. (1994). “A note on Nardostachys jatamansi.” Journal of Herbs, Spices and Medicinal Plants 2(2): 19-47.
Barden A., N. A. Anak, T. Mulliken, and
M. Song (2003). “Heart of the matter: agarwood use and trade and CITES
implementation for Aquilaria malaccensis.” <http://www.traffic.org/news/agarwood.pdf>
(May 20, 2003).
Benson, John (2000) Environmental Ethics pub. Routledge, London 2000.
Biswas (1956) Common Medicinal Plants of Darjeeling and Sikkim Himalaya M/S Bengal Govt Press, West Bengal.
Blanco & Breaux (1997) “Results of a study of commercialisation, exploitation and conservation of medicinal and aromatic plants in Spain” - unpublished report for TRAFFIC Europe through Lange, D. (1998) Europe’s Medicinal and Aromatic Plants: their use, trade and conservation. Traffic Europe 1998.
Briggs
J.D. & Leigh J.H. (1995) Rare or Threatened Australian Plants revised
edn. 1995 CSIRO Australia p103.
Brookfield H. and C. Padoch (1994) “Appreciating agrodiversity: a look at the dynamism and diversity of indigenous farming practices.” Environment 36(5): 6-11,37-45.
Burfield T. & Sheppard-Hanger S. (2003) Aromatherapy Today 26, June 2003 pp30-37.
Bush M. (2000) Bush Sense Griffin Press, Adelaide p17.
Chadwick D.H. (1995). “Dead or alive: the Endangered Species Act.” National Geographic 187(3):2-41.
Ciesla W.M. (2002) “Juniper Forests – A Special Challenge for Sustainable Industry” Forests, Trees and Livelihoods 12, 195-207.
Central Institute of Medicinal and Aromatic Plants (CIMAP). (1997). “Indian Medicinal Plants Facing Genetic Erosion” CIMAP Lucknow, p46.
Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). Official documents: appendices I, II and III. <http://www.cites.org/eng/append/latest_appendices.shtml> (May 28, 2003).
CITES Newsletter. CITES news:
plants.
www.rbgkew.org.uk/conservation/Issue7English.pdf (July 7,
2000).
De-Sheng D. (1986) “Civet Cat in China” Perfumer & Flavorist 11, Oct/Nov 1986 p97-103.
EUROPA (2003) www.europa.eu.int/comm/environment/nature/hab-an5en.htm
FAO (1986) Databook on endangered tree and shrub species and provenances. FAO, Rome 1986.
Farjon, A., Page C.N. & Schellevis N. (1993). “A preliminary world list of threatened conifer taxa.” Biodiversity and Conservation 2, 304-326.
Field survey by Faculdade de Ciencias Agrarias do Para (FCAP) Belem (undated).
Gammie A. (1894) “Reports on botanical tour of Sikkim – 1892”. Boanical Survey of India 1(2), 1-24.
Geist V. (1999) Deer of the World Stackpole Books 1999.
Green M.B.J. (1986) “The distribution, status and conservation of the Himalayan musk deer (Moschus chrysogaster).” Biological Conservation 35, 347-375
Green M.B.J. (1989) “Musk production from musk deer”. In RJ Hudson, KR Drew and LM Baskin (eds) Wildlife Production Systems pub Cambridge Univ. Press pp401-409
Hall E.R. The mammals of North America Vol II 2nd edn Wiley-Interscience 1981.
Herbs (2000) “Buchu endangered (news item)” Herbs, 25, 4-5.
Hoegler N. (2000) “Plight of Buchu Underscores the Need for International Herb Development” Herbalgram 50, 16.
International Union for Conservation of Nature and Natural Resources (IUCN) “IUCN Red list of threatened species”. www.redlist.org (May 20, 2003).
Kaiser R. The Scent of Orchids Editiones Roche 1993
Kletter C. & Kriechbaum D. (2001) eds. Tibetan Medicinal Plants Medpharm Stuttgart 2001.
Lange, D. (1998) Europe’s Medicinal
and Aromatic Plants: their use, trade and conservation. Traffic Europe 1998.
Lawrence B.M. (1985) “A review of the world production of essential oils” (1984) Perfumer & Flavourist 10, 1-16.
Lucas G. & Synge H. (1978) The IUCN Red Data Book pub IUCN Morges Switzerland 1978.
Mankin W.E. 1998. “Defining sustainable forest management.” Tropical Forest Update 8(3), 7.
Mardaga (1999) Le grand livre de la Foret Morocaine pub. P. Amardaga Spimont (Belgium) 1999.
McGriffin M. (2000) “Self Regulatory Initiatives by the Herb Industry” Herbalgram 48, 42.
Medicinal Plant Conservation (1997) “Ravensara aromatica: a threatened aromatic species of Madagascar “. Issue 4.
Momberg
F, Puri R, Jessup T (2000) “Exploitation of Gaharu, and Forest Conservation
efforts in
Morita K. (1992) The Book of Incense : enjoying traditional art of Japanese scents. Kodansha Int. Ltd., Tokyo, Japan.
Nayar R. (1988) “Cultivation, Improvement, Exploitation and Protection of Santalum album Linn.” Advances in Forestry Research in India Vol II, 1988, 117-152.
New Scientist. “Inside science: biodiversity”. New Scientist December 7, 2002 (pull-out), 1-4 Vol 176 No 2372.
O’Connell S. (2001) “A nose for new aromas” The Times Sept 8, 2001 p10.
Ohashi S.T., Rosa L dos S., Santana J.L. et al. (1997) “Brazilian Rosewood Oil: sustainable production and oil quality management” Perumer & Flavorist 22(2), 1-5.
Pakenham T. (2002). Remarkable trees of the world. Weidenfield & Nicolson, London.
Panaia M., Senaratna T., Bunn E., Dixon K.W., and Sivasithamparam K (2000). “Micropropagation of the critically endangered Western Australian species, Symonanthus bancroftii (F. Muell.) L. Haegi (Solananceae).” Plant Cell, Tissue and Organ Culture 63:23-29.
Parfums Cosmétiques Actualité (2002) “Réglementation chinoise: decisions immédiates et drastiques.” Parfums Cosmétiques Actualités No 165 June/July 2002, p48.
Parfums Cosmétiques Actualités. (2003)
“Controversy surrounding Buchu betulina”
Parfums Cosmétiques Actualités No 170 April/May 2003 p38.
Petitdidier J-P. (1986) “Traveling through Civet Perfume Country” British Society of Perfumers Newsletter for 1986 p6.
Pain, S. (2001) “The Perfume Hunter” New Scientist 21 April 2001 no. 2287 p37 (2001)
Prance G. (1998) “Indigenous non-timber benefits from tropical rain forest” in Tropical Rain Forest – a Wider Perspective ed. F.B. Goldsmith Chapman & Hall London p36.
Rai S.N. (1999) Nursery & Planting Techniques of Forest Trees in Tropical SE Asia Punarvasu Publications, Karnataka, India p147-151.
Rice D. W. (2002). In: William F. Perrin, Bernd Würsig and J. G. M. Thewissen eds, Encyclopedia of marine mammals. Academic Press, San Diego, CA.
Sahni K.C. (2000) The Book of Indian Trees pub. Bombay Nat. History Soc. Oxford Univ. Press 2nd edn. 2000 p144.
Shankar D. & Majundar B. (1997)”Beyond the Biodiversity Convention: the challenge facing the biocultural heritage of India’s medicinal plants” in Medicinal Plants for Forest Conservation & Health Care FAO Rome, 1997.
Soap, Perfumery and Cosmetics (2002) October 2002 pp42-43
Tomich T.P., Noordwijk van M., Vosti S.A. and Witcover J. (1998) “Agricultural development with rainforest conservation: methods for seeking best bet alternatives to slash-and-burn, with application to Brazil and Indonesia.” Agricultural Economics 19, 159-174.
Traffic International (1999) “Implementation of the CITES appendix II listing of jatamansi Nardostachys grandiflora and kutki Picrorhiza kurrooa: a report of the findings of research conducted by the Traffic Network under contract with the CITES Secretariat.” Convention on international trade in endangered species of wild fauna and flora. Tenth meeting of the plants committee. Shepherdstown, U.S. 11-15 December 2000.
Webb M.A. (2000) Bush Sense - Australian essential oils and aromatic compounds National Library of Australia p17.
Wemmer C. (ed) (1998) Deer: Status survey and Conservation Action Plan. IUCN/SSC Deer Specialist Group. IUCN, Gland, Switzerland & Cambridge, UK
Whyte A. (1892) Kew Bulletin p121-4.
Vanilles & Orchidées Musée Int. de la Parfumerie pub. Equiseud Aix-en-Provence (undated).
Yingkang C. (1991) “Captive Civet Cats” Perfumer & Flavorist 16, Mar/April 1991 p15.
Zhong G and Hui L. (1996) “Resettling Musk Deer: New Promise to Increase Musk Output” Perf & Flav. 21 (4) p7.
Zhu L., Ding D. & Lawrence B.M. (1994) “The Cinnamomum species in China: Resources for the present and future” Perf & Flav. 19, July/Aug 1994, 17-22.