
Filename: compeco.pdf
Version: September 17th, 1999

component ecosystems –

the context for cbd

richard veryard

veryard projects Component Ecologies

© Copyright 1999, Richard Veryard September 1999
http://www.veryard.com/

introduction .. 1

motivation - conflicting notions and perspectives about components ... 1

joined-up thinking about components and related questions.. 2

hybrids and multiple contexts... 3

four ecosystem model ... 4

separation ... 4

service use ecosystem... 4

service supply ecosystem.. 5

device supply ecosystem... 6

device use ecosystem.. 6

ecological principles ... 7

connectivity ... 7

conservation of energy... 8

flexibility ... 9

biodiversity.. 10

availability (commodity) .. 10

quality (firmness)... 11

pleasure (delight)... 12

implications... 13

CBD notions .. 13

design.. 14

commercial.. 17

testing.. 18

methodological .. 19

references.. 21

acknowledgements & contact details .. 22

author details... 22

acknowledgements ... 22

afterword... 22

veryard projects Component Ecologies

© Copyright 1999, Richard Veryard September 1999 Page 1
http://www.veryard.com/

introduction

motivation - conflicting notions and perspectives about components

Component-Based Development is commonly described in terms of a set of notions (interface,
service, encapsulation, reuse, plug-n-play). But these notions do not have a single
interpretation from all perspectives.

Take reuse, for example. Some people think reuse is terribly important, and other people don't
care a fig for reuse, but do care about critical mass or quality. Champions of reuse try to
engage wider support for reuse initiatives by arguing that reuse effectively means higher
software quality and consistency, lower software costs, faster delivery and/or greater
connectivity. But when you link reuse with these other notions, you alter the notion of reuse
itself. This fact only becomes evident when you try to agree how to measure and manage reuse.
A software engineer whose main motivation for reuse is to increase the productivity of software
development doesn't want to measure and manage reuse in the same way as a software
engineer whose primary concern is software quality or maintainability.

Even the notion of component itself means something different, according to whether you are
talking to Java programmers or respository managers or potential purchasers. How many
components are there?

When faced with differences in terminology or thinking, many engineers immediately assume
that the only solution is to agree a standard terminology. In other words, the software industry
must have only one notion of component or reuse. Although this seems reasonable in theory,
practical experience indicates that the process of consensus-building and standardization is
usually fraught with conflict, delay, compromise and confusion.

In this document, we take a different approach. We recognize that there are many
stakeholders with different perspectives on components. We observe that there are several
competing notions of component, reuse and other key terms, and we assume that all of these
notions are valid in some context. Our goal is to understand these notions, and find ways of
building useful bridges between them, not to decide which of them is the "best" or "most valid".

We analyse these differences by defining multiple ecosystems, each following a different logic.
In this document, we define four ecosystems: Service Use, Service Supply, Device Use and
Device Supply.

Now we can start to be more precise about different perspectives on, say, reuse. In each
ecosystem, there are different reasons why reuse might be directly or indirectly important to
stakeholders in that ecosystem. See Figure 1.

veryard projects Component Ecologies

© Copyright 1999, Richard Veryard September 1999 Page 2
http://www.veryard.com/

Device Use Device Supply

Service Use Service Supply

Mass
Customization

Economies
of Scale

Reuse

Value for
Money

Critical
Mass

Figure 1: Four perspectives on reuse.

What is the connection (if there is one) between reuse in the Device-Supply ecosystem and
critical mass in the Service-Use ecosystem? There are lots of ungrounded claims that more
reuse leads to greater quality, but where's the proof, and what would actually count as a valid
proof?

In short, how can a software engineer persuade a business manager to invest in "reuse", when
they don't share a notion of what reuse is, and what value it might have?

joined-up thinking about components and related questions

Should the software engineer adopt a business management notion of reuse, or should the
business manager understand the technical notion of reuse? Neither of these - instead, we
need to find ways of connecting these two notions of reuse together.

When faced with conflicting terminology, most people try to smooth out the conflicts and agree
a single homogeneous set of terms. This approach has at least four potential dangers.

1. The agreed terminology becomes so bland, and so abstract, that it becomes practically
meaningless.

2. The agreed terminology becomes so complicated, that it becomes practically unusable.

3. The agreed terminology leaves out some perspectives or stakeholders.

4. The process of agreement is too slow, and is overtaken by events. (For example, unilateral
action by a major vendor, or the arrival of the next technological wave.)

Rather than smooth out the differences, our approach is to understand them explicitly, and to
build bridges and connections between them. This is not just an intellectual exercise but an
important commercial one.

veryard projects Component Ecologies

© Copyright 1999, Richard Veryard September 1999 Page 3
http://www.veryard.com/

We believe that the dominant players in the component marketplace will be those that
can understand and engage with multiple perspectives, and can straddle multiple
ecosystems.

hybrids and multiple contexts

There was a guy who achieved some notoriety in the patent profession - my father was a patent
agent - by taking out patents in strange hybrids. For example, he got a patent in a device that
was a combined nuclear fall-out detector and catflap. (Given that patent law is designed to
prevent silly patents being granted, this required an excellent knowledge of patent law, as well
as extraordinary skill at drafting.)

Component-based development (CBD) is a similar hybrid, in the sense that it yokes together
disparate concepts and mixes metaphors. Furthermore, many of the so-called gurus seem
unaware of this. Endless arguments about what exactly a component is, or how you measure
reuse, cannot be resolved without recognizing that there are multiple contexts.

To help make these contexts explicit, we have developed the model of four ecosystems
described in this document. This should provide a decent basis for saying what CBD actually is
– or even defining some other, more coherent notions. It also helps us to build conceptual
bridges between the different perspectives, and find practical ways of collaborating across
multiple ecosystems.

veryard projects Component Ecologies

© Copyright 1999, Richard Veryard September 1999 Page 4
http://www.veryard.com/

four ecosystem model

separation

To analyse the context for software component development, we separate the whole into
separate ecosystems.

The first separation we draw is between the demand-use side and the supply side. This
separation will be familiar to most readers.

Component-based development enables a further separation, between the external service
(accessed through a component interface), and the internal component assets or devices that
deliver the service. This second separation applies equally on the demand-use side and on the
supply side, yielding four ecosystems altogether, as in Figure 2.

Demand/Use Supply

Service/
Interface

Device/
Asset

Figure 2: Four ecosystems.

service use ecosystem

activities

° Using services

° Demanding services

° Architecting / configuring use of services

° Subscribing to service publications

veryard projects Component Ecologies

© Copyright 1999, Richard Veryard September 1999 Page 5
http://www.veryard.com/

ecological principles

An important element of strategic thinking around a business process is to decide: which bits
are to be routine and mechanical, consuming as little management time and attention as
possible; and which bits are to be strategically interesting, on which management time and
attention is to be focused. Thus some business services need to be as boring as possible, while
others need to be as exciting as possible. And it’s important to get the balance right - too much
excitement is painful or stressful, while too little excitement is death. This balance is a critical
survival factor for the ecosystem as a whole; we call this the pleasure principle.

Furthermore, some services give value to their users by being unique, while others give value to
their users by being common. The best-known example of the latter is communication services:
how much value you get from your email or fax service depends on how many of your friends
and associates are also using email or fax. Thus your decision to use a given service sometimes
depends on your estimate of the number of other users. We call this the connectivity
principle. (It is sometimes known as the critical mass principle.)

service supply ecosystem

activities

° Providing / delivering services through stable interfaces

° Architecting services

° Publishing available services

ecological principles

In this ecosystem, services are competing for survival. Between two services, the more available
service will usually win over the less available. Hence there is a strong technological and
commercial pressure for services to increase their availability; we call this the availability
principle. (It is sometimes known as the commodity principle.)

Some aspects of availability are as follows (depending on the nature of the service):

° Global 24-hour access. Instant response.

° Any hardware and software platform. Available in Arabic, Chinese, English, Hindi, Russian
and Spanish.

° Easy to use. Low entry cost. Good support. Minimum learning curve.

° High reliability. Safe and secure. Low risk.

veryard projects Component Ecologies

© Copyright 1999, Richard Veryard September 1999 Page 6
http://www.veryard.com/

device supply ecosystem

activities

° Architecting devices

° Providing devices to deliver services (build, buy, assemble, reuse)

° Managing devices as assets

ecological principles

In this ecosystem, competitive survival depends on delivering the greatest quantity of service
with the smallest amount of work. This is often called reuse; software reuse should be focused
on achieving economies of scale in software, based on effective asset management and
knowledge management. We call this the energy conservation principle.

device use ecosystem

activities

° Using services

° Demanding services

° Architecting / configuring use of services

° Subscribing to service publications

ecological principles

In this ecosystem, competitive survival depends on getting the expected services (and their
associated benefits) from a given configuration of devices. This in turn relies on an ability to
predict and control the behaviour of components-in-use, including the emergent properties of
large distributed systems. We call this the quality principle.

Also relevant in this ecosystem is the ability to easily substitute devices and reconfigure
systems. We call this the flexibility principle.

Finally, the robustness, flexibility and evolution of the ecosystem depends on a reasonable
heterogeneity of software and services. We call this the biodiversity principle.

veryard projects Component Ecologies

© Copyright 1999, Richard Veryard September 1999 Page 7
http://www.veryard.com/

ecological principles

connectivity

network externalities

Economists use the term network externality to refer to those costs and benefits that depend
on the number of other users.

In many cases, the network externalities are negative. The utility of a car is reduced if there are
too many other road users; the utility of a holiday may be reduced if there are too many other
holiday-makers.

The most common examples of positive network externalities come from communications
technology. A phone or fax has no value to you, if you are the only person that has one. The
more people that share this technology, the more valuable it becomes.

Similar externalities apply in many other situations. My choice of word processor is influenced
by the fact that I want to exchange word-processed documents with my friends and associates.
An organization selecting a software development tool is influenced by the number of other
organizations using the tool – among other things, they want to know that there will be lots of
people in the job market (available as employees) familiar with the tool.

Success breeds success. To him that has, shall be given more.

standards

Markets, especially for intangible things like software components, need standards. Standards
or standard notations for component description as well as standards for component execution
(CORBA or COM).

Standards don't have to be universal. Often there are parallel or rival standards. CORBA and
COM. PC and Macintosh and UNIX.

Within each market sector, if there are rival standards and competing notations, this adds
complexity and reduces network externalities. But it doesn't follow that there should only be
one standard, even within a single sector of the market, and certainly not across all market
sectors. I certainly don't expect components for nuclear power stations to be documented in the
same way as components for banking systems. (See also comments on biodiversity below.)

The practical value of a standard depends on one thing alone: the density of the population
adhering to the standard. Technical purists may prefer Betamax to VHS, but it was VHS that
achieved the critical mass. Microsoft understands this very clearly.

veryard projects Component Ecologies

© Copyright 1999, Richard Veryard September 1999 Page 8
http://www.veryard.com/

critical mass

Critical mass denotes a point where a given density of interaction is reached, causing an
explosion to occur. This is a very good metaphor for what happens with communication
technologies such as phone, fax and email. The term is also used loosely to denote the size of a
market or other ecosystem.

size and survival

In understanding this ecological principle of critical mass, it's important to distinguish the
desirable (perfect) from the essential (good enough).

You may prefer to have a single universal standard. You may prefer to have a single universal
platform. You may prefer to have a single search engine that will find every component in the
universe, and present its description in a single universal notation.

But when you are operating in a given standard, on a given platform, using a given search
engine or notation, what matters is how large and diverse a population this does give you
access to. Perhaps there are lots of other components operating in a different standard, on a
different platform. But if your search engine already gives you access to more components than
you need, you must either decide to forget about the components it isn't giving you access to,
or use a second search engine.

Ideally, I might want to be able to converse with everybody in the world. But I'd need to learn
thousands of languages, which is impossible, even for the most gifted linguist. Most of us can
only manage a few languages, and many people get by with only one. The major world
languages have a large population of speakers, providing a critical mass of people, reading
material, general opportunities. Minor languages, whatever their cultural importance or
poetical wealth, lack this critical mass. This is why people who speak Basque or Finnish or
Welsh are under greater pressure to learn other languages than those who speak Castillian or
Russian or English.

In a real ecosystem (as opposed to Aesop's fables) the animals concentrate on eating the food
that is available to them, and don't waste energy regretting the food that might be found in
some other ecosystem. If there isn't enough food, they either migrate or die.

conservation of energy

economies of scale

People talk a great deal about software reuse. The real benefits of software reuse lie in the
economies of scale of software production and supply.

lifetime costs

Unlike simplistic notions of software reuse, the scope of conservation of energy is not just the
one-time development of a software solution, but the lifetime costs of managing and evolving

veryard projects Component Ecologies

© Copyright 1999, Richard Veryard September 1999 Page 9
http://www.veryard.com/

the solution. If a software solution goes through many different versions in its lifetime, each
version should reuse much of the previous version - the more the better.

recycling intellectual property

The principle of conservation of energy is much broader than software reuse. We also want to
reuse and recycle intellectual property, however it is bundled, as software or otherwise. This
includes capitalizing on existing assets, including of course "legacy" systems.

Recycling, of course, implies movement and use. Conservation certainly doesn't mean
hoarding. Competitive advantage doesn't come from possession and preservation of static
intellectual property, but from the rapid development and exploitation of new intellectual
property.

supply consolidation

Organizational economies of scale are also available through the software supply chain, from
developers to retailers. Given the transaction costs in the supply chain, this is more likely to
involve horizontal integration (for example, retailers offering a broader range of products,
developers addressing a broader range of requirements) than vertical integration (one firm
covering the whole supply chain).

flexibility

substitution

Can I change the overall functionality or performance of my system by replacing one
component with a similar component, without changing any other component?

(Note: this probably means that the new component has the same interface as the old one, but
a different specification. Beware of gurus who tell you that interfaces and specifications are the
same thing.)

And if possible, I'd like to do this without having to re-test the whole system.

reconfiguration

Can I change the overall functionality or performance of my system by rewiring the same
components? Can the components be plugged together in many different ways, without
interfering with their functionality or performance?

veryard projects Component Ecologies

© Copyright 1999, Richard Veryard September 1999 Page 10
http://www.veryard.com/

biodiversity

vulnerability of monoculture

"While the dominance of a single computing environment -- the one powered by Microsoft
software and Intel chips -- offers the benefits of compatibility among machines, some say it
may share the vulnerabilities of fields planted with just one crop." [Markoff]

Recent worms and viruses have swept across the Internet, prompting comparison with the ease
with which disease organisms sweep through human populations, and their herds and crops.

The best insurance against this vulnerability is the software equivalent of biodiversity: software
diversity.

Art Amolsch, editor of FTC Watch, a Washington policy newsletter, is quoted as proposing that
no government agency be allowed to run more than 34 percent of its personal computers on
one proprietary operating system.

innovation from the fringes

Not only is a homogeneous culture vulnerable to external attack from predators and parasites,
it can also be slower to adapt and evolve. In his book Guns, Germs and Steel, Jared Diamond
uses this fact to explain why China, once way ahead of Europe in agriculture and technology,
slipped behind over the past 500 years.

availability (commodity)

Availability is defined as making things more widely accessible, eliminating the barriers to use.
Wherever you want it, whenever you want it. Easy, safe and cheap.

Components should be as available as possible, in order to offer the greatest possible value
(utility) to the greatest number of potential users/uses.

retail consolidation

One way of making things more available is bringing them under one roof. A department store
or superstore is more convenient for shoppers. An e-commerce website takes this principle of
convenience further, and should make as many choices available as possible.

diversity

This is related to the concept of requisite variety. A component that runs on many different
platforms, a component that offers a choice of operating protocols, a component that can
handle multiple data formats - these are components whose variety makes them available to a
wide range of users/uses.

veryard projects Component Ecologies

© Copyright 1999, Richard Veryard September 1999 Page 11
http://www.veryard.com/

granularity

A healthy market needs to offer a good mix of different granularities. This increases overall
availability.

Although perhaps most of the early transactions in the software component market have been
in fine-grained components, there will be a trend towards a greater choice of granularity.

For some, the transaction costs of buying lots of small components may be greater than the
transaction cost of buying a few large components. For others, the reverse will be true. Thus
the transaction cost argument works both ways.

ease of acquisition

How easy is it to find, evaluate and acquire a component? Anything that makes it easier and
safer - documentation, demonstration versions, case studies, user or analyst
recommendations, quality accreditation, clear price-list - increases the availability of the
component.

quality (firmness)

assurance

Who can tell me that the component will do what I want it to, in my own environment? What
guarantees do I have? If other people have tested or inspected the component, how relevant is
this to me?

performance

How can I get satisfactory performance from an assembly of components? If I buy your
component, what performance will I get from the system as a whole?

reliability

Does the system work robustly? Is it safeguarded against rogue or poor quality components?

When components fail, do they fail cleanly, or do they cause secondary problems?

feature interaction

Does each component continue to provide the specified service, regardless of unforeseen
interactions with other components?

veryard projects Component Ecologies

© Copyright 1999, Richard Veryard September 1999 Page 12
http://www.veryard.com/

pleasure (delight)

satisfaction (I can't get no)

The pleasure principle is actually a homeostatic principle: keeping tension and stress to a
minimum.

attention

The only factor becoming scarce in a world of abundance is attention. [Kelly, p 59]

Some suppliers may interpret this as a need for promotion and publicity: brand image
management, advertising, public relations.

We've probably all seen the INTEL INSIDE stickers on the outside of computers. Some analysts
even question the commercial value of this campaign to Intel. But just imagine if all the other
suppliers of all the other components – hardware and software – wanted to put a sticker on the
outside of your computer. You wouldn't be able to see the screen!

The whole point of a component is that it should be invisible most of the time. You probably
don't have a sticker on your car, telling you what is the brand of spark plugs in the engine.
Indeed, the spark plug manufacturer probably doesn't care whether you've even heard of him.
The only attention he wants is that of the engine designer, and possibly the engine repairer.

excitement

"The function of the pleasure principle is to make man always search for what he has to find
again, but which he will never attain." [Lacan, Seminar VII]

veryard projects Component Ecologies

© Copyright 1999, Richard Veryard September 1999 Page 13
http://www.veryard.com/

implications

CBD notions

component

A software component involves a relationship between a service interface (in the Supply
ecosystem) and a software device (in the Device ecosystem). The device implements the
interface, the interface specifies the device.

This is a many-to-many relationship. One interface may by implemented several different ways,
by different devices. One device may satisfy many different specifications, describing different
interfaces.

In practice, software components often fall short of this ideal definition. It may be more
accurate to say that the device claims to implement the interface, while the interface tries to
specify the device.

encapsulation

We can characterize encapsulation as a statement about the relationship between the Service
Supply ecosystem and the Device Supply ecosystem. Certain aspects of a component are not
accessible within the Service Supply ecosystem, and are hidden behind the service interface.

Encapsulation can also be expressed as an approximately equivalent statement about the
relationship between the Service Use ecosystem and the Device Use ecosystem.

plug’n’play

The very metaphor of plugging and playing means that we are in the Device Use ecosystem.
This notion has no meaning in the other three ecosystems.

reuse

Reuse of software assets primarily makes sense within the Device Supply ecosystem, although
it also has relevance within the Device Use ecosystem.

Within Device Supply, reuse equates to economies of scale in software development and
maintenance. Within Device Use, reuse equates to economies of scale in software procurement
and operation, which is not the same thing. These impact the Service ecosystems only
indirectly, to the extent that they affect service variety, cost and quality of service.

veryard projects Component Ecologies

© Copyright 1999, Richard Veryard September 1999 Page 14
http://www.veryard.com/

Within the Service ecosystems, a different notion of reuse can be focused on the commonality
of services and interfaces. In order to exchange word processing documents with my friends
and associates, I need a common exchange format. It ought not to matter to me what version of
what word processing product they are using, as long as the formats match. I can certainly
send faxes to people without knowing what fax machine they have.

design

design for connectivity

If we are trying to increase the connectivity of a component, and to establish a critical mass
(density) of use, the design focuses on the following:

° Increase information content

° Look for ways of making component more active, more intelligent

° Expand connections with other components – networks enlarge small advantages

Kelly uses the example of a nail.

° Standard contractor size fits into standard air-powered hammers

° SKU designation fits into retail sales network

° Bar code fits into laser-read checkout system

° Embedded chip warns door of breakage – fits into smart house network

design for flexibility & biodiversity

If we are trying to increase flexibility and biodiversity, the design focuses on the following:

° Distribute intelligence

° Don’t just support the execution of transactions, support the design of transactions as well

° Automate / animate change

° Zero latency

° The weaker the interface specification, the more things will fit.

Where is flexibility located?

° in individual component – reuse same component in new situation

veryard projects Component Ecologies

© Copyright 1999, Richard Veryard September 1999 Page 15
http://www.veryard.com/

° in component kit – substitute component for new situation

° in configuration – plug same components together in new ways

° in architecture – plug together new components for new situation

Where is diversity located?

° in the component kit – alternative components within same kit

° in the configuration – alternative paths and connections

° in the management process

design for availability

If we are trying to increase the availability of a component, the design focuses on the following:

° Whole product – not just software, but also support, documentation, training and other
services.

° Consider giving the key components away free – make your money elsewhere.

There are many examples where these tactics have achieved significant market share:

° browser wars

° search engines

° shareware

° Linux Apache

design for quality / reliability

Systems should be robust and fault-tolerant.

Components should tolerate erratic system behaviour.

Examples include military systems and the Internet itself.

design to conserve energy (economies of scale)

If we are trying to exploit economies of scale, the design process focuses on the following:

° Aggressively exploit and anticipate the learning curve

veryard projects Component Ecologies

© Copyright 1999, Richard Veryard September 1999 Page 16
http://www.veryard.com/

° Align to the scale economies of your business / market

° Repackage and reuse knowledge assets at all levels – working practices, design patterns,
templates & software code.

Kelly quotes the example of Fairchild Semiconductor.

° Initial production cost: $100

° Competing (old) product cost $1.05

° We sell ours for same price - at a huge loss.

° Gain 90% market share.

° Within 2 years, selling the same product for 50¢ - at a profit.

design for pleasure

If we are trying to increase the potential for pleasure, the design focuses on the following:

° reduce tension / stress (where this may be a result of excess choice or excess attention)

° support self-preservation

° engage users

Successful design involves a balance of contradictory forces:

° change / nochange

° evolutionary (small change) / revolutionary (large change)

° attention / inattention

° risk / reward

There are several examples of small changes that turned out to have revolutionary potential.

° email as substitute for office memos

° Amazon.com as substitute for traditional bookshop

veryard projects Component Ecologies

© Copyright 1999, Richard Veryard September 1999 Page 17
http://www.veryard.com/

commercial

types of software supply

CBD increases the separation between demand-driven and supply-driven software
organizations. (This applies to in-house software factories as well as to commercial software
houses.)

Demand driven Supply driven

Close relationship to customer base.

Focus on the services that are wanted in the
selected market.

Competing on value.

Close relationship to technology base.

Focus on exploiting existing software assets.

Competing on price/cost.

In the past, the supply-side could be divided into two modes of software supply.

Off-the-shelf. Some suppliers designed and marketed products for sale into an identified
market (or ecosystem). These were standard products, with little or no variation, and were
typically expensive to modify or integrate. If many users bought the same product, then the
development and marketing costs could be shared between them, reducing the individual cost
to each user.

Bespoke. Some suppliers designed and delivered one-off products to a particular customer’s
specification. These were typically much more expensive per user than standard off-the-shelf
products, and took longer to deliver, but were (at least in theory) much closer to the customer’s
requirements.

Component-based development enables a third mode of software supply.

Mass customization. Suppliers who are able to respond to the needs of a single customer,
while achieving economies of scale across multiple customers.

There are many ecosystems containing only off-the-shelf and bespoke suppliers, in which
neither mode of supply can eliminate the other. However, as soon as mass customization
becomes effective in a given supply ecosystem, then off-the-shelf and bespoke supply are
ecologically doomed, and will eventually be eliminated from that ecosystem. These suppliers
may survive in the short term by switching to other (perhaps smaller niche) ecosystems, but for
how long?

According to this analysis, the growth of CBD creates challenges for both types of software
supplier.

veryard projects Component Ecologies

© Copyright 1999, Richard Veryard September 1999 Page 18
http://www.veryard.com/

challenges for software houses

A software house that specializes in bespoke software development may detect increasing
difficulties competing on price. If your competitors are achieving better economies of scale,
without compromising quality and flexibility, then they will be able to undercut your prices.

Most software houses still bid for bespoke work on the basis of a simple formula: estimated
cost plus contingency plus profit. There may be some opportunities for you to reduce costs or
contingency, by improving your software process.

But if your competitors are doing this too, this won’t be enough.

There are two possible strategies for survival. You can either move up the "food chain",
concentrating on supply and packaging of services (while subcontracting the software
engineering side to cheap suppliers in Bangalore). Or you can embrace the ecological
imperative: conservation of energy.

Instead of bidding for bespoke work on a cost-plus basis, you must try to determine what the
customer is willing to pay.

If this isn’t enough to cover your costs, then you need to find a way of satisfying the customer
that leaves you with some residual value. If you have developed some software components
that you can sell to other customers as well, this might well make up the difference. (There are
other forms of residual value, but this is the most likely one for a software house to exploit.)

challenges for package vendors

Meanwhile, a software product vendor with a standard fixed range of products may detect
increasing difficulties maintaining market share, or entering new markets. If your competitors
can offer more flexible products, with greater availability and lower total cost of ownership,
then they can erode your customer base.

The challenge for such suppliers is to leverage the economies of scale, to get wider flexibility
and availability from an equivalent device base, and to get much greater internal levels of
reuse. This is basically an architectural issue: how to improve the internal configuration and
layering of the product. (Some suppliers will choose to keep the benefits of this improved
architecture to themselves, while others will choose to open up the architecture to customers
and third parties.)

testing

Given this model of the CBD world, two distinct forms of testing are needed. (Similar remarks
apply to verification and validation).

intra-ecosystem testing

Testing components and component interactions within one ecosystem.

veryard projects Component Ecologies

© Copyright 1999, Richard Veryard September 1999 Page 19
http://www.veryard.com/

° For example, within the service supply ecosystem, we may test that services satisfy their
specifications. We can also test interactions between a bundle of services.

° For example, within the device supply ecosystem, we may test conformance of components
to various specifications or standards.

Most of the available tools and techniques for testing belong to a single ecosystem.

inter-ecosystem testing

Testing components and component interactions across two or more ecosystems.

° For example, testing that a device satisfactorily implements an interface.

° For example, end-user acceptance testing.

Testing across two or more ecosystems needs a collaboration between multiple roles, where
each role represents a given perspective within a given ecosystem.

methodological

My characterization of the four ecosystems is preliminary. I'm not even sure that there have to
be four of them. I am however fairly convinced of the need for some such model of a number of
separate ecosystems, able to support at least the distinctions I want to make and probably
some more as well.

We also need to recognize that there is some interfolding of the four ecosystems, in the sense
that each may impinge into the environment of the others. However, I don't think this
observation forces me to accept the validity of a single whole system.

The idea of dividing a situation into multiple ecosystems has more general applicability. To take
another example, a manufacturing company would typically have models of the production
process and also models of the sales and marketing process. (The production process could
have an enterprise model, an information model and so on. Similarly, the sales and marketing
process would have multiple models.)

We could usefully regard the production process and the sales and marketing process as
belonging to two separate ecosystems. There are known problems in joining / yoking the
information model of one process with the information model of another process, which
popular fantasies of the global enterprise-wide information model fail to address. There are
similar problems in joining the enterprise model belonging to one process/ecosystem with the
enterprise model belonging to the other. Of course, production impinges on sales & marketing,
and vice versa, but the coordination between the two processes is not simply a matter of
merging the models.

People from the production ecosystem just don't speak the same language, or recognize the
same problems, as the people from the sales & marketing ecosystem. Of course they come to a
pragmatic accommodation with each other, but this doesn't represent a true meeting of minds,

veryard projects Component Ecologies

© Copyright 1999, Richard Veryard September 1999 Page 20
http://www.veryard.com/

or shared intentionality. And that's true even when they are all divisions of the same company.
And it gets all the more interesting in a distributed or federated situation.

So I think there is a lot of mileage in the general idea of producing models of multiple
ecosystems, and problematizing the interactions across ecosystems. I will defend that idea
much more strongly that I will defend the particular model I have produced of the CBD world.

However, the four ecosystem model of the CBD world allows me, I believe, to throw some new
light on a number of CBD topics.

We use the word ecosystem, rather than markets or industries or networks, because it is
more general. An ecosystem may contain human agents or organizations, or it may contain
intelligent software agents, or it may be a hybrid.

The natural world can be regarded as a single global ecosystem, because there are some
connections between all the parts. (Birds may visit even a remote island, carrying new species
of plant or insect.) However, for many purposes it is simpler to regard a semi-isolated part as a
separate ecosystem.

Some economists use the term ecologies rather than ecosystems, but I prefer to reserve the
term ecology to refer to the scientific study of ecosystems. (I'm no biologist, and I haven't
studied how professional ecologists handle these situations. My focus is on ways of modelling
that will support business strategy and change management, and also IT planning and
technology transfer.)

In delineating an ecosystem, I think one is saying that the interactions within the ecosystem
are somehow different to the interactions across the boundary of the ecosystem.

Here's a simple analogy. People work in universities according to a certain logic. They interact
with each other in particular ways, compete for particular tokens of success, and so on. People
work in industry according to a different logic. I think it's fair to characterize this as two
separate (but connected) ecosystems. In the academic ecosystem, there is an ecological
principle of "publish or die"; this principle is largely absent from industry. The two ecosystems
have different pressures, different time horizons, different ways of thinking about all sorts of
problems. This is precisely why it's worth having many bridges and joint activities between the
two ecosystems; but these are likely to fail if they don't recognize that there are different
principles on each side.

If I'm operating in two ecosystems at the same time, what are the implications of this? Do I
become schizophrenic? In many companies, the marketing department operates in a different
ecosystem to the production department, and the resulting inter-departmental tensions and
conflicts can be very damaging unless carefully managed.

Instead of the biological/ecological metaphor of ecosystem, some readers may prefer to think
in terms of a political economy. However, I think the ecosystem metaphor is more useful than
the market metaphor in dealing with these multiple roles and the conflicts between them. A
bird that wants to do well in the bird-worm ecosystem has to spend a lot of time pecking at the
ground, but a bird that wants to do well in the bird-cat ecosystem has to spend a lot of time
flying away. The features or defences that are useful in one ecosystem may be a handicap in
another ecosystem. A simple characterization of a market as a set of buyers confronting a set of
sellers doesn't go far enough for my purposes.

veryard projects Component Ecologies

© Copyright 1999, Richard Veryard September 1999 Page 21
http://www.veryard.com/

references

Albert Borgmann. Technology and the Character of Contemporary Life. A philosophical
inquiry.

(Chicago University Press. 1984.)

A classic account of technological change. Borgmann introduces what he calls the device
paradigm, in which technological progress increases the availability of a commodity or
service, and at the same time pushes the actual device or mechanism into the
background.

Jared Diamond. Guns Germs and Steel. A short history of everybody for the last 13,000 years.

(Vintage Random House, 1998.)

Provides a large look at the history of the world. Explains why the people in some parts of
the world developed faster and further than others, without appealing to inherent genetic
(racial) differences. The relevance of this book here is its contribution to the topic of
biodiversity.

Kevin Kelly. New Rules for the New Economy. 10 ways the network economy is changing
everything.

(US edition: Viking Penguin; UK edition: Fourth Estate. 1998.)

A systematic analysis of the strategies for successful business in the new world. This is
the open, distributed, connected, chaotic world he described in his previous book. Out of
Control: The New Biology of Machines, Social Systems, and the Economic World.

John Markoff. "Illness Is Fast Becoming Apt Metaphor for Computers" (New York Times)

http://www.nytimes.com/library/tech/yr/mo/biztech/articles/14worm.html]

Richard Veryard. Related material can be found on the Veryard Projects website:
http://www.veryard.com

veryard projects Component Ecologies

© Copyright 1999, Richard Veryard September 1999 Page 22
http://www.veryard.com/

acknowledgements & contact details

author details

Richard Veryard is a technology consultant, based in London. Please send feedback and
further questions to richard@veryard.com.

acknowledgements

David Iggulden provided discussion and feedback at many levels. Vincent Traas asked some
good questions. Thanks also to the CBDi Forum, in particular Paul Allen, Ian Graham, Simon
Holloway, David Sprott, Lawrence Wilkes and Paul Winstone.

afterword

“A wit has said that one might divide mankind into officers, serving maids and chimney sweeps.
To my mind this remark is not only witty but profound, and it would require a great speculative
talent to devise a better classification. When a classification does not ideally exhaust its object, a
haphazard classification is altogether preferable, because it sets imagination in motion.”
[Kierkegaard]

