
Author: Richard Veryard
Version: January 20th 1999

richard@veryard.com
http://www.veryard.com

For more information about SCIPIO, please
contact the SCIPIO Consortium.

info@scipio.org
http://www.scipio.org

© Copyright 1999 Richard Veryard Page 1

Determining the
requirements for software

components

SCIPIO Component Requirements

© Copyright 1999 Richard Veryard Page 2

PrefacePreface

Purpose of documentPurpose of document

Ø To describe the SCIPIO approach to determining the requirements for software
components.

Ø To critique traditional OOAD approaches to requirements engineering, especially those
based on Use Cases.

Questions for readerQuestions for reader

The text is interspersed with open questions, which the reader is invited to consider.

QQQ How will software engineering practices need to change, if they are to
accommodate Component-Based Development?

QQQ How soon do you expect these changes to be widespread within the software
industry?

AcknowledgementsAcknowledgements

Thanks to David Iggulden and Paul Winstone for useful discussions.

SCIPIO Component Requirements

© Copyright 1999 Richard Veryard Page 3

IntroductionIntroduction

SummarySummary

The popular engineering approach to determining the requirements for software components
is in three stages. This approach has been carried forward from structured methods to Object
Oriented Analysis and Design (OOAD).

Ø First you identify a group of users who need a software solution for an identified
business problem.

Ø Then you define the requirements on the software system. In OOAD this is
usually specified as a set of use cases. These requirements may be based on a
model of the business process, and are negotiated with the users.

Ø Then you design the software system as a set of interacting components.

Of course, if you are trying to build generic components for multiple use, there may not be a
specific business process to analyse, or even a specific software system to design. Furthermore,
there may not be any specific users to negotiate requirements with. Undaunted by this,
software engineers typically adopt the same approach but at a different level of abstraction. A
domain is defined, which is a generic business process or generic area of automation.

Ø First you identify a group of domain experts, who are supposed to stand proxy
for a class of potential users.

Ø Then you define the requirements on the domain, in collaboration with the
domain experts.

Ø Then you design a generic kit of interacting components, which will be usable for
any system or business process that satisfies the generic domain description.

Ø Then you assemble systems from these components that satisfy the specific needs
of particular users within the target area.

This approach implies a division of labour: some engineers specialize in the creation of small
lumps of functionality (called software components); while other engineers specialize in
assembling these components to produce large lumps of functionality (known as software
applications or systems).

But this approach assumes that it is meaningful to think about software requirements in terms
of a fixed lump of functionality, known as the software system or application, delivered to a
fixed community of users. It assumes that one person or team (possibly known as the system
architect) has design control over this lump.

The limitations of this approach emerge when we are faced with large open distributed
dynamic networks of software. It is both a business imperative and a technological imperative
for business organizations to connect their business processes into these networks. These
networks lack central design authority or architectural control, and evolve organically.
Overall functionality and structure may change unpredictably from one day to the next.

SCIPIO Component Requirements

© Copyright 1999 Richard Veryard Page 4

Connecting to these networks raises a number of difficult management dilemmas, including
control, security and stability.

These networks are “Out of Control”. Traditional engineering approaches are inadequate for
operating effectively in this environment. Biological and ecological metaphors seem to have
more relevance than engineering metaphors. [Reference: Kevin Kelly]

The SCIPIO approach to creating software components is radically different to the traditional
engineering approach, and is based on biological and ecological metaphors.

Ø First we identify an ecosystem, which may contain both human users and
existing artefacts.

Ø Then we identify services that would be meaningful and viable in this
ecosystem.

Ø Then we procure devices that enable the release and delivery of these services
into the ecosystem.

ContextContext

In this section, we aim to understand the context in more detail. We define a series of what we
call ecosystems. We use this word, rather than markets or industries or networks,
because it is more general. An ecosystem may contain human agents or organizations, or it
may contain intelligent software agents, or it may be a hybrid.

The natural world can be regarded as a single global ecosystem, because there are some
connections between all the parts. (Birds may visit even a remote island, carrying new species
of plant or insect.) However, for many purposes it is simpler to regard a semi-isolated part as a
separate ecosystem.

Instead of the biological/ecological metaphor of ecosystem, some readers may prefer to
think in terms of a political economy.

SeparationSeparation

To analyse the context for software component development, we separate the whole into
separate ecosystems.

The first separation we draw is between the demand-use side and the supply side. This
separation will be familiar to most readers.

Component-based development enables a further separation, between the external service
(accessed through a component interface), and the internal component assets or devices that
deliver the service. This second separation applies equally on the demand-use side and on the
supply side, yielding four ecosystems altogether.

SCIPIO Component Requirements

© Copyright 1999 Richard Veryard Page 5

Service Use Ecosystem

Ø using services

Ø demanding services

Ø architecting / configuring use of
services

Ø subscribing to service publications

Service Supply Ecosystem

Ø providing / delivering services through
stable interfaces

Ø architecting services

Ø publishing available services

Ecological principles:
pleasure, critical mass

Ecological principle:
commodity/availability

Device Use Ecosystem

Ø configuring devices

Ø installing / connecting / calling
devices

Ø predicting device behaviour

Ø predicting system behaviour

Device Supply Ecosystem

Ø architecting devices

Ø providing devices to deliver services
(build, buy, assemble, reuse)

Ø managing devices as assets

Ecological principles:
quality, flexibility

Ecological principle:
conservation of energy / economies of scale / reuse

Ecological principleEcological principle

In each of the four ecosystems, we can identify one or more ecological principles or economic
imperatives.

Service use ecosystem

An important element of strategic thinking around a business process is to decide:
which bits are to be routine and mechanical, consuming as little management time
and attention as possible; and which bits are to be strategically interesting, on which
management time and attention is to be focused. Thus some business services need
to be as boring as possible, while others need to be as exciting as possible. And it’s
important to get the balance right - too much excitement is painful or stressful, while
too little excitement is death. This balance is a critical survival factor for the
ecosystem as a whole; we call this the pleasure principle.

Furthermore, some services give value to their users by being unique, while others
give value to their users by being common. The best-known example of the latter is
communication services: how much value you get from your email or fax service
depends on how many of your friends and associates are also using email or fax.
Thus your decision to use a given service sometimes depends on your estimate of the
number of other users. We call this the critical mass principle.

SCIPIO Component Requirements

© Copyright 1999 Richard Veryard Page 6

Service supply ecosystem

In this ecosystem, services are competing for survival. Between two services, the
more available service will usually win over the less available. Hence there is a strong
technological and commercial pressure for services to increase their availability; we
call this the availability principle. (It is sometimes known as the commodity
principle.)

Some aspects of availability are as follows (depending on the nature of the service):

Ø Global 24-hour access. Instant response.

Ø Any hardware and software platform. Available in Arabic, Chinese,
English, Hindi, Russian and Spanish.

Ø Easy to use. Low entry cost. Good support. Minimum learning curve.

Ø High reliability. Safe and secure. Low risk.

Device supply ecosystem

In this ecosystem, competitive survival depends on delivering the greatest quantity of
service with the smallest amount of work. This is often called reuse; software reuse
should be focused on achieving economies of scale in software, based on effective
asset management and knowledge management. We call this the energy
conservation principle.

Device use ecosystem

In this ecosystem, competitive survival depends on getting the expected services (and
their associated benefits) from a given configuration of devices. This in turn relies on
an ability to predict and control the behaviour of components-in-use, including the
emergent properties of large distributed systems. We call this the quality
principle.

Also relevant in this ecosystem is the ability to easily substitute devices and
reconfigure systems. We call this the flexibility principle.

A good component is one that satisfies the ecological principles of all four
ecosystems. Such a component is viable and meaningful, and is likely to survive and
develop.

TriggersTriggers

What then triggers the creation of a new component?

The initial stimulus may come from any of the four ecosystems.

Demand-driven. An agent may identify some service that he/she/it requires. This
generates an unsatisfied service demand, which may be communicated to the service supply
ecosystem in hopes of a response. Alternatively, the service demand may be translated into a
device demand, and communicated from the device use ecosystem to the device supply
ecosystem.

SCIPIO Component Requirements

© Copyright 1999 Richard Veryard Page 7

Supply-driven. A supplier may identify an opportunity to extend an existing service to
increase its availability. Or to package a bundle of existing services and/or devices to provide
a new service. An engineer may identify an opportunity to wrap or modify an existing device
to provide new services. Prototype devices may be reengineered to increase availability of
services.

Regardless of the initial stimulus, a successful component needs to find sufficient acceptability
on the demand-side, and sufficient economies of scale on the supply-side. The requirements
process needs to connect with both imperatives, but in no particular sequence.

Types of supplierTypes of supplier

In the past, the supply-side could be divided into two modes of software supply.

Off-the-shelf. Some suppliers designed and marketed products for sale into an identified
market (or ecosystem). These were standard products, with little or no variation, and were
typically expensive to modify or integrate. If many users bought the same product, then the
development and marketing costs could be shared between them, reducing the individual cost
to each user.

Bespoke. Some suppliers designed and delivered one-off products to a particular customer’s
specification. These were typically much more expensive per user than standard off-the-shelf
products, and took longer to deliver, but were (at least in theory) much closer to the customer’s
requirements.

Component-based development enables a third mode of software supply.

Mass customization. Suppliers who are able to respond to the needs of a single customer,
while achieving economies of scale across multiple customers.

There are many ecosystems containing only off-the-shelf and bespoke suppliers, in which
neither mode of supply can eliminate the other. However, as soon as mass customization
becomes effective in a given supply ecosystem, then off-the-shelf and bespoke supply are
ecologically doomed, and will eventually be eliminated from that ecosystem. These suppliers
may survive in the short term by switching to other (perhaps smaller niche) ecosystems, but for
how long?

QQQ Do you think there are any software supply ecosystems in which a supplier can be
safe from competition from software mass customization? How would you be
sure?

Supply challengeSupply challenge

Bespoke. A software house that specializes in bespoke software development may detect
increasing difficulties competing on price. If your competitors are achieving better economies
of scale, without compromising quality and flexibility, then they will be able to undercut your
prices.

Most software houses still bid for bespoke work on the basis of a simple formula: estimated cost
plus contingency plus profit. There may be some opportunities for you to reduce costs or
contingency, by improving your software process. But if your competitors are doing this too,
this won’t be enough.

SCIPIO Component Requirements

© Copyright 1999 Richard Veryard Page 8

There are two possible strategies for survival. You can either move up the “food chain”,
concentrating on supply and packaging of services (while subcontracting the software
engineering side to cheap suppliers in Bangalore). Or you can embrace the ecological
imperative: conservation of energy.

Instead of bidding for bespoke work on a cost-plus basis, you must try to determine what the
customer is willing to pay. If this isn’t enough to cover your costs, then you need to find a way
of satisfying the customer that leaves you with some residual value. If you have developed
some software components that you can sell to other customers as well, this might well make
up the difference. (There are other forms of residual value, but this is the most likely one for a
software house to exploit.)

Off-the-shelf. Meanwhile, a software product vendor with a standard fixed range of
products may detect increasing difficulties maintaining market share, or entering new markets.
If your competitors can offer more flexible products, with greater availability and lower total
cost of ownership, then they can erode your customer base.

The challenge for such suppliers is to leverage the economies of scale, to get wider flexibility
and availability from an equivalent device base, and to get much greater internal levels of
reuse. This is basically an architectural issue: how to improve the internal configuration and
layering of the product. (Some suppliers will choose to keep the benefits of this improved
architecture to themselves, while others will choose to open up the architecture to customers
and third parties.)

Perspectives on open distributed systemsPerspectives on open distributed systems

Five viewpointsFive viewpoints

Initial work on architecture for open distributed systems was carried out by the ANSA project
under the UK Alvey Programme. This identified five different formal descriptions of an open
distributed system. (The ANSA architecture uses the term projection for these five
descriptions.)

This work developed into an international standard Reference Model for Open Distributed
Processing [ISO 10746] - variously known as RM-ODP or ODP-RM.

The RM-ODP allows for any coherent set of formal descriptions, which it calls viewpoints.
It is usually assumed that there will be five viewpoints, corresponding to the five projections of
the ANSA architecture.

Enterprise
Viewpoint

Describes the purpose of
the system.

This viewpoint includes the intended roles
and responsibilities of human and
software agents within the system.

Information
Viewpoint

Describes the meaning of
the system.

This viewpoint includes the semantics of
the conversations (or messages) passed
between the agents.

Computational
Viewpoint

Describes the causal
behaviour of the system.

This viewpoint includes the operational
rules governing and triggering the
behaviour of the system components.

SCIPIO Component Requirements

© Copyright 1999 Richard Veryard Page 9

Engineering
Viewpoint

Describes the design
mechanisms of the system.

This viewpoint includes the devices that
implement the behaviour.

Technology
Viewpoint

Describes the physical
infrastructure of the
system.

This viewpoint describes the physical
assets that support the engineering
devices.

Component viability and compatibilityComponent viability and compatibility

For a component to be viable within a given ecosystem, it needs to be viable within all five
viewpoints.

Ø It needs to serve a useful purpose, relative to the intentions of some community of
agents.

Ø It needs to be semantically meaningful. Its interface has to have an information
model that is recognisable by other agents within the service use ecosystem.

Ø Its behaviour needs to fit with the expectations of other agents. It must conform to
standard or local interfaces and protocols.

Ø Its internal design must be compatible with the quality and performance demands of the
device use ecosystem.

Ø Its technical requirements must be compatible with the available infrastructure and
resources within the device use ecosystem.

Component Component economies of scaleeconomies of scale

Let us now return to the supplier challenge of economies of scale. We can now articulate a
supply strategy for achieving economies of scale in terms of the five viewpoints.

A supplier of software components achieves effective reuse by combining customization (i.e.
maximum variation) in one viewpoint with standardization (i.e. minimum variation) in
another viewpoint.

For example, a supplier may define a standard information model, and then seek to deliver
this on as many platforms as possible.

Or a supplier may make a strategic commitment to a single platform (e.g. Enterprise Java
Beans), and then attempt to deliver a highly flexible information model from a common code-
base.

SCIPIO Component Requirements

© Copyright 1999 Richard Veryard Page 10

CBD MethodsCBD Methods

Critique of traditional OOAD methodsCritique of traditional OOAD methods

Let us use this analysis to identify the limitations of traditional OOAD methods.

Focus on user requirementsFocus on user requirements

Traditional engineering methods, including OOAD, start from the assumption that somebody
requires something to use, and the engineering task is to construct a solution that satisfies
that user requirement.

This assumption fits most software development projects, but not all. Some of the time the
project objective is to build something that nobody knew they needed. The only known
requirement may be the supplier’s need to remain in business, but this is not usually regarded
as a user requirement, and is usually ignored by requirements engineering methods.

But if CBD projects are supposed to be focused on reuse, this conflicts with the supposed need
to be focused on user requirements. This is because reuse has no meaning within the
service use ecosystem.

Focus on software sFocus on software system ystem behaviourbehaviour

Furthermore, most traditional engineering methods formulate the requirements in terms of the
behaviour of some system, usually restricted to a computer information system or software
system. OOAD methods usually specify these requirements as a set of use cases.

Where a software development project can exercise design control over an entire system, then
this approach still seems to be valid. However, this approach fails to support the design of
components within open distributed systems, because such systems generally lack central
design control.

QQQ Is it possible to define a use case for a single component? Do you think it is
meaningful or useful to do so? Or would you regard this as a trivialization or
perversion of the use case concept?

Furthermore, there are problems with flexibility. The demand for flexibility (which we have
positioned within the device use ecosystem) needs to be balanced against the demand for
particular services (which we have positioned within the service use ecosystem).

QQQ Is it possible to formulate requirements for flexibility in terms of use cases?

SCIPIO Component Requirements

© Copyright 1999 Richard Veryard Page 11

Methodological implications of our analysisMethodological implications of our analysis

Any CBD method that is truly focused on software reuse and economies of scale should
contain the following elements.

Ø A systematic way of understanding the design and operational constraints of a given
ecosystem.

Ø A systematic way of defining component interfaces that will be useful, meaningful,
relevant, and compatible within the target ecosystem.

Ø A systematic way of predicting the amount of use that a given component is likely to
achieve in a given ecosystem.

Ø A systematic way of balancing standardization with customization.

Such a method will almost certainly need to articulate several different viewpoints on a
distributed system, as required by RM-ODP.

SCIPIO ApproachSCIPIO Approach

ViewpointsViewpoints

We define five viewpoints. These are based loosely on the ANSA/RM-ODP set; we have
adopted some modifications to make them more generalized.

Viewpoint Focus Key Concepts

Enterprise Business relationships Stakeholder
Intention
Role
Responsibility

Exchange Conversations

Workflows and information flows

Joint action
Collaboration
Transaction
Flow

Behaviour Activities Service
Interface
Rule
Operation
Use cases

Design Components Component
Component kit
Connector

Physical Infrastructure Platform
Mechanism
Protocol

SCIPIO Component Requirements

© Copyright 1999 Richard Veryard Page 12

Not all five viewpoints may be applicable or relevant in every situation or project.

StepsSteps

The SCIPIO Method analyses the requirements for software components in the following
way.

Scope Ecosystem Define the target
ecosystem for components.

We use informal techniques to produce
an initial scope definition, which may be a
combination of text and rich pictures.

Later refinements are more formal, and
are based on the models of the ecosystem.

Model Ecosystem Develop formal
descriptions of the
ecosystem.

We may produce models in all five
viewpoints, or some of them, depending
on the situation.

Identify Service
Opportunities

Identify unfilled or weakly
filled niches in the service
use ecosystem.

A service opportunity may be based on
any of the following:

Ø An unsatisfied intention of some
agent

Ø An unsatisfactory existing service,
lacking quality or availability

Ø An opportunity to subdivide existing
roles.

Create Service
Opportunities

Specify interface of
proposed service.

Must include quality of service
characteristics as well as ‘functional’
behaviour.

Confirm Service
Meaningful
within Ecosystem

Estimate the likely
adoption of the proposed
component in the target
ecosystem.

We check the specification against our
analysis of the ecosystem, in all five
viewpoints.

In some cases, the use of a component
depends on achieving a critical mass
within the ecosystem within a defined
period.

Confirm Service
Economies

Verify that the service can
be delivered cost-
effectively and profitably.

This may be based on an analysis of the
opportunities to reuse existing assets, or to
otherwise leverage economies of scale.

Extend Ecosystem Identify additional
ecosystems for potential
use.

If the proposed component is not cost-
effective or profitable within the original
target ecosystem, or it is unlikely to
achieve a critical mass of usage, we may
need to find additional ecosystems to
support the development of this
component.

SCIPIO Component Requirements

© Copyright 1999 Richard Veryard Page 13

ScenariosScenarios

This method allows for several scenarios of user/requirements, including the traditional ones:

Ø Provision of whole systems or individual components for a specified user or user
community, funded by (or on behalf of) that user/community.

Ø Speculative development of whole systems or individual components, for publication and
sale within a defined market.

Ø Development of intelligent software agents for release into a global network (such as the
Internet), with various payment and funding models.

Ø Collaborative speculative development, in which a relatively small number of users
participate in a development, but a significant portion of the funding comes from
speculation against future reuse by a much wider community.

SCIPIO Component Requirements

© Copyright 1999 Richard Veryard Page 14

ReferencesReferences

The Biology of Machines. Kevin Kelly, Out of Control: The New Biology of Machines.
UK edition, Fourth Estate 1994.

RM-ODP - the reference model for Open Distributed Processing.
The official website for RM-ODP is http://www.iso.ch:8000/RM-ODP/
There are some key papers downloadable from the ANSA website http://www.ansa.co.uk but
the website itself is so badly signposted that you would be unlikely to find what you wanted.
See instead http://www.dstc.edu.au/AU/research_news/odp/ref_model/

SCIPIO. For more information on SCIPIO, including a detailed task structure, please see the
SCIPIO website at http://www.scipio.org/

