
h

richard@veryard.com
http://www.veryard.com

For more information about SCIPIO, please
contact the SCIPIO Consortium.

info@scipio.org
http://www.scipio.org

© Copyright 1999 Richard Veryard Page 1

Designing Software
Components

SCIPIO Component Design

© Copyright 1999 Richard Veryard Page 2

PrefacePreface

Purpose of documentPurpose of document

Ø To state the requirements for an effective and successful design approach.

Ø To describe the SCIPIO approach to designing federated organizations and networks.

Ø To describe the SCIPIO approach to designing distributed software systems and software
components.

AudienceAudience

This document is intended for the practitioners of organizational and systems design, and for
people who want to participate in the specification of requirements, especially where these
systems are to be federated between multiple organizations or distributed across decentralised
organizations.

Questions for readerQuestions for reader

The text is interspersed with open questions, which the reader is invited to consider.

QQQ How will software engineering practices need to change, if they are to
accommodate Component-Based Development?

QQQ How soon do you expect these changes to be widespread within the software
industry?

AcknowledgementsAcknowledgements

This material draws on research carried out under the Enterprise Computing Project. This
work benefited from the participation of John Dobson, David Iggulden, Rob van der Linden,
Ian Macdonald and Sally Jack.

SCIPIO Component Design

© Copyright 1999 Richard Veryard Page 3

IntroductionIntroduction

How do CBD and ODP affect Design?How do CBD and ODP affect Design?

In an open distributed processing world, design is different in two ways:

Ø Different resulting systems

Ø Different design process - design process is itself a distributed system

What are the methodological issues arising from these differences?

System specification Designers need to specify flexible yet coordinated solutions. Prior
to the use of open distributed processing technology, flexibility and
integration were often opposed goals: the more you had of one, the
less you had of the other. Open distributed processing helps the
designer reconcile these goals.

Object service
specification

The generic architecture of an open distributed processing system
comprises objects providing services. The identity of any such object
or service depends not only on what the object actually does, but also
how this is presented or described, either by the object itself or by
traders/brokers on its behalf. This aspect of the specification of these
objects and services is a key design issue.

The viability of an object depends on its ability to provide required
services under a range of likely scenarios. For short-term viability, the
object must generate enough value to support the continued
availability of its services. For longer-term viability, the object must
generate enough value to support adaptation of the object to changing
requirements.

Design process ‘Open’ and ‘distributed’ are not only characteristics of the systems that
are being developed and implemented in an open distributed
processing world, they are also characteristics of the design process
itself, which typically lacks both a fixed statement of requirements and
a central design authority. Coordination between multiple designers is
focused on the negotiation of interfaces. We may need to address in
new ways the quality of the design process, as well as of the designed
product.

Requirements for a Design MethodRequirements for a Design Method

Quality of designQuality of design

A design judgement needs to be evaluated at three levels:

Ø at the level of the system being designed, where the design should represent a good
pattern, and embody good design values and practices

SCIPIO Component Design

© Copyright 1999 Richard Veryard Page 4

Ø at the supersystem level, where the designed system should contribute in a positive way to
some broader system

Ø at the subsystem level, where the design should create an integrating
structure/environment in which the lower-level detail can be worked out

A good design is a collection of good design judgements. We can talk about the overall value
of a design - this is precisely what is required for a business case. A good design judgement
increases the overall value of the design, but this overall value cannot be distributed
arithmetically between the judgements that make up the design.

The requirements for a design method can be brought under the umbrella of quality. Quality
relates to everything else.

Quality of design as end-productQuality of design as end-product

A socio-technical system needs to be evaluated in three ways:

1. From a combined socio-technical perspective

2. From a social perspective

3. From a technical perspective

In other words, some of the quality characteristics apply to either the social or technical
aspects of the system, while some of the quality characteristics apply to both at once.

From a combined perspective, a systems design should be:

Well-modularized - i.e. defining modules that have maximum cohesion and minimum
connection

Measurable and testable - i.e. the non-functional requirements should be objective and (if
possible) quantified.

Well-connected - i.e. consistent with architectures and policies, and with an appropriate
level of integration with other related systems

From a social perspective, a systems design should be:

Usable - i.e. fitting into the intended business environment, and providing useful support to
the user in carrying out his/her job

User-friendly - i.e. with computer functionality matching the structure of the business
operations, so that the system works the way the user thinks

From a technical perspective, a systems design should be:

Implementable - i.e. technically feasible on the chosen target platform

Efficient - i.e. with an adequate balance between speed, throughput and cost-effective use of
computer resources.

SCIPIO Component Design

© Copyright 1999 Richard Veryard Page 5

Quality of design processQuality of design process

We can also identify the process quality criteria for the design methodology:

Correctness - i.e. no design errors found during testing or operations

Maximum reuse of design components

Minimum ‘thrashing’ - i.e. going round in circles before agreement can be reached

Low maintenance costs of system (other than owing to changes in model)

Maximum learning for participants and entire organization

Efficient & effective - i.e. achieving a good result with a reasonable expenditure of time and
energy

SCIPIO Component Design

© Copyright 1999 Richard Veryard Page 6

Design ProcessDesign Process

RationaleRationale

The rationale for revisiting the design topic is to consider how distribution affects the classical
design process. A basic characteristic of the classical design process whether of the waterfall,
spiral or incremental development variety is that systems were generally produced under a
single design authority. With distribution this stringent aspect is relaxed as components of a
distributed system may be designed by different hands at different times and with different
assumptions and constraints.

Another characteristic of distributed systems is the potential for reuse of components and the
manufacture of components from templates as required. The design process therefore needs to
bear all these aspects in mind especially the tendency to construct systems from pieces of low-
grained functionality with the extra information requirements that are entailed. These
information requirements are pointed up by the discussions on design repositories

Who is the designer?Who is the designer?

We should think of the designers as anyone doing design, and not only professional designers
(technologists). These people may well be managers and management consultants, rather than
Designers with a capital D.

Nature of designNature of design

The potential scope of design ranges from the complete business to the design of individual
modules or activities.

The question of the design (or rather re-design) of the business or enterprise arises through
economic, commercial and regulatory pressures on the one hand and on the other by the
opportunities provided by technological innovations. SCIPIO models provide the possibilities
of animation so that the stakeholders may make choices and state preferences amongst
alternatives. By separating the functional, economic and change issues these choices are made
clearer and are supported by a number of analytical disciplines.

Although the design process is generally limited in scope to the design of software components
it is necessary to consider to periodically question the fitness of purpose. This may be done by
some kind of incremental development or prototyping where validation of the design may be
frequently tested. In a teamwork environment then the design may be worked at the same as
the production and support processes and certainly with the co-operation of the various users
and stakeholders of the product.

Design contractDesign contract

For our purposes, the notion of contract is a codification of agreement between known
parties for the development of a design. We see this as a particularly crucial factor: the biggest
driver of the design process is typically the location of contractual boundaries.

SCIPIO Component Design

© Copyright 1999 Richard Veryard Page 7

In any particular context the design process will be driven by the boundaries of the location of
the contract in place. This is effect saying that there has to some prior agreement between the
parties involved which determines the extent of the boundaries and allows them to be
renegotiated and redrawn.

It should be noted that the telecoms world use the word ‘contract’ to refer to a specification, or
to a proforma agreement with arbitrary future parties. We want to call this something else (e.g.
a service specification).

Technical environment for design processTechnical environment for design process

This section discusses the information and communications requirements of the designers
themselves, and the extent to which appropriate socio-technical systems may satisfy these
requirements.

Having derived as complete a description of a software component as possible, it is necessary
to ensure that this description becomes available to all those who need to have access to it. In
general this means everyone who is in some way legally interested in the component and its
interactions. Maintenance personnel will need to know about the components they are
maintaining. Designers of new features will require access to descriptions of the components
already in the system. They will also be extending descriptions of components that make up a
new feature.

At times they will want to query the set of descriptions to see if a component with desired
characteristics has already been developed. This raises the question of what kinds of query
should be supported. Using formal languages is probably not a good idea: writing the query
would take as long as writing the specification, syntactically different descriptions may be
semantically the same, and there is no such thing as a close match between two formal
specifications.

Designers will also want to get access to completed software components, or to organizations
that are proposing to build such components, once they have identified the required
characteristics. In open distributed computing systems this can be provided in one of two ways:
either a reference to a construction service (a factory), or a reference to an actual instance is
passed back to the party that invoked the query. A construction service is able to construct a
software component with particular characteristics.

To support these and other design, development and maintenance activities, on a large scale,
the information service must itself be built as large-scale service in a wide area
communications network. (The structuring principles discussed later in this paper should of
course be applied to such a system.) Such a service needs to span organizational boundaries
and be able to store a wide variety of information. In the future this information will also be
used to drive application transformation and configuration tools.

Design NegotiationDesign Negotiation

This section, on the generic design process, is meant to highlight the issues in design in the
world of distributed systems and to be of use in understanding more general development
issues especially those of construction and migration. The main issues relate to conflicts arising
because of parts of the system deriving from different sources and under different regimes and
the consequent need for maintaining and making available specifications and reasons for
particular design choices.

SCIPIO Component Design

© Copyright 1999 Richard Veryard Page 8

One of the key notions of open distributed processing is the capability to negotiate an
interface at execution time. Technical design considerations (beyond the scope of this
document) are involved in designing systems with such capability. This leads inevitably to
recognizing the importance of negotiating the interfaces within the design process itself.

Difficulties of designing in an open distributed processing worldDifficulties of designing in an open distributed processing world

Several obstacles have to be overcome specifically when software components and information
about them are passed across organizational boundaries. The problems are partly technical,
partly human, and partly a consequence of the way in software is procured.

Technical problems The difficulty of developing reusable components.

The difficulty of a priori deciding whether a
component is actually reusable.

The absence of any effective catalogues, which
can be searched effectively.

Human problems Software reuse involves a kind of de-skilling of
what are seen as highly skilled developers [Wood
& Sommerville 1988].

Economic problems Deciding who owns a complex object which has
been built by X for Y, using components
developed by Z.

There are many other differences on either side of the organizational boundary:

Ø No common purpose; different organizational entities often lack a common purpose,
specially if boundaries lie between dissimilar industries.

Ø No trust; there is an inherent lack of trust between different organizational entities. This is
most vividly reflected in the uncertainties about the quality of a software component that
is obtained from another domain.

Ø No common economic framework; where components are provided by one organization
and used in another there may be a need for payment. There is no clearly defined market
for software components or information about them, neither is there a clear idea of how
to charge for either use or ownership.

Ø No common legal framework; software components may be of inferior quality, or the
information about a component may be inaccurate. It is unclear what if any legal
framework applies in these cases.

Ø No common meaning and representation; there is little agreement about the languages
which should be used for the description of software components. Misunderstandings can
arise despite the presence of comprehensive descriptions (some aspects can only be
described in natural language for instance; formal languages need a common context for
agreed interpretation).

Ø No common quality standards; the agreed measures for software component quality have
been derived from those suitable for hardware components (MTBF, MTTF etc.).
Software quality of service is often better expressed in application dependent terms, such
as mission time (the time during which a component is to stay operational with a precisely
defined probability of failure for instance).

SCIPIO Component Design

© Copyright 1999 Richard Veryard Page 9

Ø No support for distribution; this is a problem which requires the application of distributed
processing technologies.

The above organizational issues should be solved within the business process of producing new
features for telecommunications systems. They are part of a business process re-
engineeringactivity in which several telecommunications companies may wish to become
engaged.

Teamwork and design Teamwork and design coordinationcoordination

Various teamwork disciplines are described in the literature such as Total Quality
Management, Concurrent Engineering and the Virtual Enterprise. Such disciplines need
particular tools which themselves need to be designed. The need for change management in
such an environment with various players puts a premium on distributed databases,
groupware, multimedia and graphical interfaces and display.

Because of the likely distribution of the tools there is the need of support for replication,
replication and concurrency. This is in addition to the question of recording and display of
design information. Team design activity needs to use such support services as lookup,
computation, communication, negotiation, decision and storage (or archiving).

The design process as embodied in tools and procedures and in the statements and guidelines
of best practice must tie choices being made in the socio-technical design with formulation of
the business case, and the procedures and models of change, commissioning and
decommissioning. Models and tools for configuration management may provide a hint of how
to carry this out. In other words there has to be some notion or mechanism for establishing the
consistency of the models being developed. This will probably be done by repositories of
designs and design choices in all three areas.

SCIPIO Component Design

© Copyright 1999 Richard Veryard Page 10

SCIPIO Design GuidelinesSCIPIO Design Guidelines

Design for FlexibilityDesign for Flexibility

Designers need to specify flexible yet integrated solutions. Prior to the use of open
distributed processing technology, flexibility and integration were often opposed goals: the
more you had of one, the less you had of the other. Open distributed processing helps the
designer reconcile these goals.

Flexibility is promoted by the following design precepts, which are supported by SCIPIO
modelling techniques:

Design systems by
composition from
smaller units.

Ø The SCIPIO model shows (perhaps many) ways in which an
enterprise may be decomposed.

Ø The SCIPIO model also shows (perhaps many) ways in which
the parts of an enterprise may gain by being connected.

Decentralize control
subsystems

Ø Bottlenecks of command and control, in which opportunities
for massively parallel operations are frustrated by central
(decision-making) authority and lack of local empowerment.

Improve the overall
robustness of a system
by improving the
robustness of individual
components.

Ø The SCIPIO model may indicate particular areas of
uncertainty where early commitment may be unwise.

Use responsibility
clustering to divide a
system into subsystems.

Ø The SCIPIO model should tell us enough about the intentions
of the various agents to indicate what are the important states
(conditions) for which some agent needs to be responsible.

Ø The enterprise model should also tell us which agent (if any) is
currently responsible for which states.

Ø Where an agent is responsible for two contradicting conditions
p and q, convert this into a responsibility for maintaining a
proper balance between p and q.

Ø Where one agent is responsible for p and another agent is
responsible for q, and there is a positive or negative correlation
between p and q, consider making one agent responsible for
both conditions (and for the balance between them).

Ø Where one agent is responsible for too many different things,
look for a way of subdividing these responsibilities into separate
agents, with low coupling between them.

How much flexibility is required? Since flexibility can be thought of as the adaptability of a
solution to changing requirements, flexibility itself is a second-order requirement. This is an
area for further research.

SCIPIO Component Design

© Copyright 1999 Richard Veryard Page 11

Design for Design for CoordinationCoordination

Coordination is promoted by the following design precepts, which are supported by the
technique of enterprise modelling:

Use the mechanisms,
concepts and techniques
of open distributed
processing to handle
data in different formats,
with different (but
overlapping) scope, and
with different levels of
granularity and detail.

Allow the user to view
data from
heterogeneous sources
in the same format, for
ease of comparison.

Allow the user also to
view the data in the
original format, since
reformatting may
sometimes cause
information loss or
distortion.

Ø Information provision can be modelled as a service. The
service chain can be modelled, to identify the ultimate source of
information. This helps verify that two apparently independent
items of information really are independent.

Ø Analyse what difference an item of information might make. Is
there (for example) a process whose outcome will be
significantly affected? What is the risk of errors and omissions?

Federate, as a cheap
way of reducing
interaction distance
between heterogeneous
systems.

Ø Determine actual interaction distance by analysing relevant
exchanges. Determine desired interaction distance by
analysing relevant intentions.

Ensure conversation
parties have agency over
the related policies; for
example, a highly
distributed system will
lead to lack of
centralized control over
information accessibility
and may therefore
weaken a chain-of-
command structure.

Ø Examine the responsibilities of the parties to conversations in
the conversation hierarchy

Ø Responsibility for making policy (and other intentions) versus
responsibility for executing policy.

Design for IdentityDesign for Identity

The generic architecture of an ODP system comprises objects providing services.
Specification of these objects / services is a key design task.

The identity of any such object depends not only on what the object actually does, but also
how this is presented or described, either by the object itself or by traders/brokers on its
behalf.

SCIPIO Component Design

© Copyright 1999 Richard Veryard Page 12

Design for identity therefore implies the creation of meaningful descriptions.

We have identified the following design precepts:

Build computer systems
to facilitate worker
learning. Build data
systems that allow or
encourage creative
changes of use. Make
models and diagrams of
the system’s structure
and workings accessible
to the users.

Ø The SCIPIO model may be used as a presentation tool, to
communicate systems to their users.

Provide mechanisms to
allow the user to select
the level of visibility or
transparency of each
technical matter.

Ø Each technical matter may be identified as the responsibility of
a given agent (or role). We can analyse how
effectively/efficiently these responsibilities are currently
fulfilled.

Ø Alternatively, technical expertise may be identified as a
resource, embedded either in people or in technical devices.
We can analyse how effectively/efficiently these resources are
currently deployed.

To build a Chinese wall,
it is not enough merely
to withdraw formal
communication
mechanisms between
departments. It will
often be necessary to
actively discourage or
forbid contact.

Ø

Overcome/counteract
the tendency to hide the
identity of electronically
mediated co-workers.
Provide mechanisms for
personal contact
between agents.

Ø The SCIPIO model may be used to identify those relationships
which are too important to be mediated solely by electronic
means.

Design for ViabilityDesign for Viability

The generic architecture of an ODP system comprises objects providing services.
Specification of these objects / services is a key design task.

The viability of an object depends on its ability to provide required services under a range of
likely scenarios. For short-term viability, the object must generate enough value to support the
continued availability of its services. For longer-term viability, the object must generate
enough value to support adaptation of the object to changing requirements.

Design for viability therefore implies the creation of added value.

We have identified the following design precepts:

SCIPIO Component Design

© Copyright 1999 Richard Veryard Page 13

Design for diversity Ø The SCIPIO model indicates where multiple agents may
provide variant services.

Analyse attitudes to
current systems to
determine any
hysteresis. Evaluate the
effect of this ‘hysteresis’
on the proposed socio-
technical system.

Design components of
the system so that a
‘history of past decisions’
is maintained.

Ø Look for delays between cause and effect. This means we
should include some cause-effect modelling in the modelling
language.

Ø Look for negative feedback loops.

Ø Look for a process for discovering and dealing with negative
feedback loops. This means we should model second-order
processes (i.e. processes about processes).

Guarantees must be
formulated and
incorporated into the
specifications of
components and the
consequences of failure
defined.

Ø The SCIPIO model must incorporate a failure model. The
consequences of failure will allow the importance of certain
actions to be assessed and modal distinctions made between the
necessary and the possible.

Expectations provide a
statement of ‘ideal’
requirements. The
design process must
allow suitable trade-offs
to be made between the
ideal and the feasible.

Ø The changes sought by a requirements statement should satisfy
two main criteria:

Ø They should be systemically desirable. They can be
incorporated within an overall system design.

Ø They should be culturally feasible. They have to be
regarded as meaningful by the people and organizational
culture in question.

Agents should have the
necessary authorization
and capability tokens to
enable them to access
the information
resources they require to
fulfil their
responsibilities and
discharge their
obligations.

Ø Agents cannot independently transfer their responsibilities
to other agents, but they can transfer their obligations. The
result of this process is the establishment of a new responsibility
relationship between the (pairs of) agents involved. A chain of
responsibility relationships can be created as obligations pass
from one agent to another. Within each responsibility
relationship both agents have a responsibility for the same state
of affairs, although their obligations differ.

Ø The first agent acquires a new obligation of a structural nature
to do whatever is appropriate with respect to the other agent in
order to fulfil his responsibility, such as directing, supervising,
monitoring and suchlike of the other agent. The other agent
also acquires an obligation of a complementary nature to be
directed, to be supervised or whatever. (These are termed
structural obligations. They may be implicit in the
hierarchical structure of the organization rather than as a result
of explicit delegation.)

SCIPIO Component Design

© Copyright 1999 Richard Veryard Page 14

ReferencesReferences

RM-ODP - the reference model for Open Distributed Processing.
The official website for RM-ODP is http://www.iso.ch:8000/RM-ODP/
There are some key papers downloadable from the ANSA website http://www.ansa.co.uk but
the website itself is so badly signposted that you would be unlikely to find what you wanted.
See instead http://www.dstc.edu.au/AU/research_news/odp/ref_model/

SCIPIO. For more information on SCIPIO, including a detailed task structure, please see the
SCIPIO website at http://www.scipio.org/

Wood, M., and I. Sommerville, An information retrieval system for software components,
Software Engineering Journal, pp.198-207, Sept. 1988.

