
Author: Richard Veryard
Version:February 12th 1999

richard@veryard.com
http://www.veryard.com

For more information about SCIPIO, please
contact the SCIPIO Consortium.

info@scipio.org
http://www.scipio.org

© Copyright 1998, 1999 Richard Veryard Page 1

Reusing Legacy:
Models, Data
and Systems

SCIPIO Legacy

© Copyright 1998 Richard Veryard Page 2

PrefacePreface

Purpose of documentPurpose of document

Describes the techniques used by SCIPIO for extracting value from legacy models, legacy data
and legacy systems.

Should be read in conjunction with one or more documented case studies for SCIPIO.

AssumptionsAssumptions

The reader should be familiar with model-based development, such as Information
Engineering.

Outstanding questionsOutstanding questions

This document has been developed as a draft for discussion. Some open questions are
interspersed with the text.

QQQ Do you have any experience or opinions relevant to the question?

QQQ Do you have any additional ideas or issues?

AcknowledgementsAcknowledgements

SCIPIO Legacy

© Copyright 1998 Richard Veryard Page 3

IntroductionIntroduction

PurposePurpose

This document assumes that you want to extract components from your legacy application
systems.

There are several reasons why we might wish to do this.

v Because we believe that there is (or will be) demand for this component, either internally
or externally.

v Because we wish to add functionality to a legacy system using components.

v Because we wish to create interfaces between legacy systems and new systems.

v Because there is a specific problem with the legacy systems, and we want to use
components as part of the solution. (One example is the use of bridging components to
deal with the Year 2000 problem - see references.)

v Because we want the longer-term benefits of having all systems constructed from
components.

GoalsGoals

We want to make maximum reuse of legacy assets, while minimizing the inheritance of legacy
liabilities and constraints.

Legacy assetsLegacy assets

QQQ Where is the value in reusing legacy systems? How can we quantify the value of a
legacy asset?

If an application system is currently in use within an organization, there must be a reasonable
degree of fit between the system and the organization. The fit may be imperfect, and the users
may have to undergo various inconveniences and tribulations to make the system work, but at
least it does work. Furthermore, the users are familiar with the system, warts and all.

To the extent that the system works, it must contain some knowledge about the business
requirements. The system has a reasonably good internal model; this model may be implicit
or explicit, depending on how the system was developed and documented, and how it has
been maintained.

Of course, the value of a legacy system does not necessarily bear any relation to the amount of
time and effort you have put into it.

SCIPIO Legacy

© Copyright 1998 Richard Veryard Page 4

Legacy liabilitiesLegacy liabilities

QQQ What limits the successful reuse of legacy systems? How can we quantify the
depreciation of a legacy asset?

A legacy system may not work all the time. It may have undocumented features or erratic
behaviour, especially when exception conditions occur. It may have bugs or poor
performance.

A legacy system may have in-built constraints deriving from the way it was conceptualized or
designed. The internal model may be adequate for a limited range of situations, but it may
not be adequate for all situations. The design may make simplifying assumptions that limit
future reuse.

For example, a legacy system may contain a batch procedure that is designed for single-
threaded operation on a flat file. It would take a clever programmer indeed to wrap that
procedure so that it would support multi-threaded operation.

A legacy system will usually be designed for operation on a specific technical platform.
Considerable effort may be required to eliminate the dependency of the code on this platform,
and to make it work on other platforms.

Furthermore, any poorly executed action on a legacy system, including wrapping, may worsen
its quality and performance. Wrapping almost always introduces some performance overhead,
and this is not always balanced by the technical superiority of the target plaftorm: sometimes a
poorly wrapped system can run slower on a high-performance machine than it did in its
original technical environment.

System ConversionSystem Conversion

A common technical challenge with legacy systems is to convert them to some other platform,
or to make them compliant with some new requirement. Converting legacy systems to
support Year 2000 and Euro trading falls into this category.

A chunk of legacy system makes a component. Each chunk needs to be tested and
implemented separately. Clean interfaces need to be defined between the chunks, so that
converted chunks can interoperate with unconverted chunks. Management will be reassured
when they see a growing number of converted chunks successfully tested and incorporated into
production systems.

As each chunk of legacy system is converted, it is provided with two parallel interfaces: one for
communicating with unconverted chunks, and one for communicating with converted chunks.
This is achieved with 'intelligent' bridging components.

The alternative is a very high-risk strategy: big bang conversion, where the entire legacy
portfolio is converted from non-compliance to compliance in a single overnight integration test
and implementation.

For many conversions, such as Year 2000 conversions, are regarded as simply a programming
task: to find all the date references in the code and fix them. Managers argue that any higher
level analysis is both a distraction (given the urgency of the task) and an impossibility (given the
poor structure of the systems and the unreliability, incomprehensibility or sheer absence of
documentation).

SCIPIO Legacy

© Copyright 1998 Richard Veryard Page 5

But most people would accept the need for some form of testing before the altered programs
are returned into the production environment. This testing needs to include
system/integration testing - does this program still work in conjunction with other programs -
as well as unit testing.

But here's the difficulty. If you don't know what a system is supposed to do, you can’t test it.
The ability to conduct a meaningful test implies a specification of the system. And if you don't
know what separate subsystems are supposed to do, you can only test the whole system as one
large lump. In such circumstances, debugging is a hit-and-miss affair, as likely to add bugs as
to remove them.

Therefore, if your legacy systems are poorly structured and lack good documentation, some
form of analysis is all the more necessary. The analysis we recommend concentrates on
creating a relatively small number of large components with a small number of access points
into each one.

Overall Task StructureOverall Task Structure

This task structure is extracted from the SCIPIO development process framework.

Application Assessment

Ø Assess Demand for Component

Ø Assess Current Application Quality

Ø Review Current Application against Objectives

Ø Establish Application Benchmark

Ø Set Targets for Application Improvement

Ø Explain Application Characteristics

Ø Estimate Characteristics of Solution (simulation)

Ø Review Characteristics of Solution (post-implementation evaluation)

Application Analysis

Ø Map Current Application

Ø Document Application Components

Ø Document Application Interfaces and Protocols

Ø Document Application Responsibilities

Ø Map Process to Application

SCIPIO Legacy

© Copyright 1998 Richard Veryard Page 6

Application Design

Ø Information Sourcing

Ø Component Identification

Ø Component Protocol Design

Ø Component Responsibility Assignment

Ø Data Storage Design

Ø Component Specification

Ø Component Sourcing

Application Conversion

Ø Transition Component Construction

Ø Component Publication

Ø Solution Testing

Ø Solution Deployment

SCIPIO Legacy

© Copyright 1998 Richard Veryard Page 7

AssessmentAssessment

Assess demandAssess demand

If the primary purpose of the project is to satisfy some demand, either internal or external,
then the focus of this stage will be to assess this demand.

If our intention is to sell components outside the organization, then we need to have a
reasonable idea of the revenue we could expect to earn. We need to have some way of
assessing the number of organizations or individual users that might be expected to use a given
component, and the price that could be charged. If we expect other competing components to
be available in the marketplace, we should estimate the market share that we might reasonably
achieve.

Any organization that intends to build components for commercial sale should have a
development policy that limits the development expenditure to a certain proportion of the
expected revenue.

Development 30%

Documentation 10%

Publication / Marketing 30%

Support 10%

Profit / Risk 20%

Figure 1: Typical commercial development policy

Even for internal reuse, we need to make some judgement of the likely level of reuse, so that
we can allocate scarce development resources to things that have the greatest reuse value.

An assessment of competing components will also help us create a component that emphasises
the unique features and benefits that we are able to offer.

Assess application qualityAssess application quality

Often the primary reason to convert legacy systems into components is to improve the quality
of the system itself, or to create new interfaces into the system. This requirement may form
part of a larger development or maintenance project using Component-Based Development.

In this situation, the focus of assessment will be the quality of the legacy system itself, in terms
of its functionality, maintainability, user-friendliness, efficiency, reliability and portability.
This assessment will guide us towards those parts/aspects of the system where we are likely to
get the greatest benefits of conversion to components. For example, if one portion of the
legacy system has a history of frequent change, this will be a candidate for early conversion.

SCIPIO Legacy

© Copyright 1998 Richard Veryard Page 8

Analysis and DesignAnalysis and Design

System archaeology and dissectionSystem archaeology and dissection

Legacy code is often compared to spaghetti, but lovers of Italian food will recognize that pizza
provides a much better analogy. You try to cut out a wedge of pizza, but it remains connected
to the rest of the pizza by innumerable strands of elastic cheese.

Or we might prefer to compare legacy code with lasagne. What were once separate layers of
cheese, pasta and other ingredients have now been melted into a solid mass.

When we look at the legacy systems of a large company, we are usually presented with what
appears to be a list of application systems. But this list can be misleading. The items in the list
refer to the original system development projects - the layers of the lasagne. The systems have
usually grown and changed, in functionality and architecture, often to the point where the
original names no longer seem appropriate. New data stores, or interfaces to remote data
stores, may have been added adhoc.

Even if the applications were originally designed according to a well-thought-out architecture,
with maximum cohesion and minimum coupling, evolution of the applications over time may
have greatly reduced the cohesion within each application and increased the coupling between
applications.

So the segmentation of legacy code may not follow the apparent boundaries between the
legacy applications. We need to identify ways of carving up the code with maximum cohesion
and minimum coupling. Sometimes you can improve the situation by reducing connectivity
between subsystems.

The idea is to convert an interlocking portfolio into a manageable set of segments connected
by defined interfaces with bridges at each crossing point.

We may identify different design patterns in legacy systems.We may identify different design patterns in legacy systems.

Different design approaches focus on different types of simplicity and coherence in the
designed system. Within traditional structured methods, such as Information Engineering,
several design patterns are possible. We can identify two main patterns here: the data-driven
approach and the event-driven approach.

Of course, many legacy systems have been extensively altered since their original design
conception. This may mean that the original patterns have been largely lost or heavily
compromised. But it is usually possible to find some parts of the system where the original
pattern can still be seen.

The reason we are interested in identifying the patterns of the original design is that this tells
us what kind of components we should expect to find buried in the legacy system. Data-driven
design patterns tends to yield data-oriented components, while event-driven or process-driven
design tends to yield business-service or process-oriented components.

SCIPIO Legacy

© Copyright 1998 Richard Veryard Page 9

QQQ Should we identify any other standard patterns of legacy system design?

Data-driven designData-driven design

The designer of the legacy system may have adopted a data-driven approach: focusing on
achieving simplicity of data access. Such a system offers simple data access for each data
object, based on a standard pattern:

C: Create

R: Read

U: Update

D: Delete

The overall coherence of the system is again focused on data structure and access. Each
computer transaction acts on one data object, or closely related data objects. Typically, the
same screen or window design would be used for all data accesses on that object. Sometimes,
this pattern will be complicated by the need for different users to have different levels of access
to the same data objects. (In other words, some users are allowed to perform create/update
operations on a given data object, while other users are only allowed to perform read
operations.)

Some development environments allow for stored procedures to be attached to data objects in
the database. When these data objects are wrapped as components, these procedures
normally become part of the component behaviour.

With data-driven legacy systems, it is usually relatively easy to identify and isolate components
offering data services.

QQQ Should a data access component contain its own accessing rules? How would this
be implemented? What are the other options?

Manage
Customer

Claim

Create Claim

Update Claim

Customer
Customer

Claim

Customer
Claim
Status

Customer Claim Data Access

Customer
Customer

Claim

Customer
Claim
Status

*

*

Read Claim Details

Delete Claim

Create Claim

Update Claim

Read Claim Details

Delete Claim

Figure 2: Data-driven design yields data access component.

SCIPIO Legacy

© Copyright 1998 Richard Veryard Page 10

Event-driven designEvent-driven design

Alternatively, the designer of the legacy system may have adopted an event-driven approach:
focusing on achieving simplicity of processing business events. In such a system, each type of
business event triggers a separate computer transaction.

The designer focuses attention on the coherence of events and object life-cycles. Event
coherence is achieved by completely handling each event by a single transaction. An event
triggers state transitions of one or more data objects, and the life-cycles of these data objects
should be complete and consistent.

Event-driven legacy systems may yield components offering process-oriented services.

Manage
Customer

Claim

Register Claim

Settle Claim

Customer
Customer

Claim

Customer
Claim
Status

Customer Claim Management

Customer
Customer

Claim

Customer
Claim
Status

*

*

Investigate Claim

Reject Claim

Register Claim

Settle Claim

Investigate Claim

Reject Claim

Figure 3: Event-driven design yields business service component.

Hybrid designHybrid design

Many legacy systems contain some subsystems that are predominantly data-oriented and some
subsystems that are predominantly event-oriented.

This may either be part of the original design concept for the system, or may be a result of
later additions and modifications.

Data StructureData Structure

Data Data subtypingsubtyping

Traditional data modelling

Using traditional data modelling, data objects are defined according to a common structure of
attributes and relationships. Thus CUSTOMER ARCHIVE is regarded as the same data object as
CUSTOMER, because it has the same attributes and relationships. However, CUSTOMER
ARCHIVE has quite different behaviour to CUSTOMER, and it is required by a quite different set
of procedure objects. The behaviour of CUSTOMER ARCHIVE probably has more in common
with that of PRODUCT ARCHIVE and EMPLOYEE ARCHIVE.

SCIPIO Legacy

© Copyright 1998 Richard Veryard Page 11

Traditional entity modelling allowed for subtypes to be identified, but these were often clumsy
to implement on relational databases. For this reason, many legacy data models don't contain
subtypes.

Component-based development

Object orientation contains the notion of multiple inheritance, which essentially means
that a data object can be a subtype of many different supertypes. Thus CUSTOMER ARCHIVE
may inherit its data structure from CUSTOMER but it inherits its behaviour from a generic
procedure object called ARCHIVE. This would include such operations as placing things in the
archive, accessing archive data, and restoring data from archive.

There are various ways this can be implemented through components. For example, if the
archive behaviour can be suitably generalized, it can be wrapped into a component that is
called by anything that requires archiving.

Alternative data viewsAlternative data views

In many traditional database systems, every program must use
the same data structure.

People and Places

Person
Person

Residence
at Address

Address

New Person

Change Person Address

New Address

Lookup Current Address

Review Address History

*

*

In this example, we have a complex data object, which is composed of three simpler data
objects.

If we build a single component to provide all data access to this compound data object, this
has the advantage of consistency. Any changes to the data structure are made in one place
only.

However, this solution has two significant disadvantages: performance and maintenance.

v In some technical environments, such a component may become a performance
bottleneck.

v Any changes to the component interface will require changes to all the programs and
components that use this interface.

v In some cases, depending on technical environment and management policy, all changes
to the component may require some reconstruction and retesting of all the programs and

SCIPIO Legacy

© Copyright 1998 Richard Veryard Page 12

components that use this interface, even if these changes are internal to the component
and don't alter the interface.

In component-based systems, some programs may use a different
data service.

Current Address

Person Current
Address

New Person

Change Address

Lookup Current Address

*

People and Places

Person
Person

Residence
at Address

Address

New Person

Change Person Address

New Address

Lookup Current Address

Review Address History

*

*These programs
can use a simpler
data structure.

These programs
can use a simpler
data structure.

Figure 4: Hiding data structure.

What we would like to do is define a simplified view on the data, which most of the users can
access rather than having to handle the full complexity of the data structure. Most relational
databases support such views (sometimes called subschemas). However, many CASE tools do
not use this RDBMS feature, and require all procedures to access the logical data model
directly.

If we define a second data access component to support this simplified view, we can simplify
most of the programs by switching them over to this view. Consistency is maintained, because
both data access components are supported by the same persistent data storage.

Note that we don't have to switch all the programs over at once. We may wait until there is a
specific maintenance requirement on a program, or convert a few at a time according to
available resources.

The more data service components we introduce, the easier it gets
to change the data structure.

The more programs we can switch over to these data access components, the easier it gets to
change the data structure. In Figure 5, only those programs that use the full PERSISTENT
DATA STORAGE interface may require rework, recompilation, retesting and/or reinstallation.

Note that Figure 5 shows the logical component interfaces, rather than the physical packaging
of components. In technical environments where it is possible to build components with
several different interfaces, the designer may choose to package both the DATA SERVICE 1
interface and the PERSISTENT DATA STORAGE interface into a single physical component.
However, the same argument applies.

SCIPIO Legacy

© Copyright 1998 Richard Veryard Page 13

Data Service 1

Person Postal
Address

New Person

Change Address

Lookup Current Address

*

Persistent Data Storage

Person
Person

Residence
at Address

Postal
Address

New Person

Change Person Address

New Address

Lookup Current Address

Review Address History

*

Email
Address

* *These programs
are not affected
by the addition of

Email Address.

These programs
are not affected
by the addition of

Email Address.

Lookup Email Address

Figure 5: Hiding changes to data structure.

If we introduce business service components, we can put business
logic in one place.

Dispatch Item

Send Item to Person

We can now send
things from these
applications by
email, without
changing the
programs.

Person

Address

*

Item Item Type

*

Email
Address

Postal
Address

The dispatch
method

depends on
the item

type, and on
the available
addresses.

We can now send
things from these

applications by
email, without
changing the

programs.

The dispatch
method

depends on
the item

type, and on
the available
addresses.

Figure 6: Hiding business logic.

Furthermore, we can use this approach to take some of the logic out of the programs. In the
example shown in Figure 6, we have encapsulated the choice of dispatch method within the
DISPATCH ITEM component.

SCIPIO Legacy

© Copyright 1998 Richard Veryard Page 14

ClusteringClustering

A legacy system can be seen as one very large component.A legacy system can be seen as one very large component.

vocabulary
LEGACY SYSTEM

operations

*
* * *

* * *

*

*

Figure 7: Legacy system as class.

All legacy systems perform a set of operations, which define its behaviour. In order for these
operations to work at all, the system needs to have a vocabulary (or implied data structure).

If the legacy system has been developed and maintained using models, such as data and
process models, these models should provide a good first cut of the vocabulary and behaviour
of the system.

In some cases, however, the system models will include data and procedure objects that have
been introduced for internal design and implementation purposes only. These should not be
regarded as part of the business requirements.

We identify clusters in the legacy systems.We identify clusters in the legacy systems.

data objects

procedure
objects

Figure 8: Interaction clustering.

SCIPIO Legacy

© Copyright 1998 Richard Veryard Page 15

Information Engineering includes techniques for analysing the interactions between data
objects (usually entity types) and procedure objects (usually either elementary processes or
procedure steps). The interactions, which may be Create, Read, Update or Delete, are shown
on a matrix colloquially known as a CRUD matrix.

Based on these interactions, the rows and columns of the CRUD matrix are shuffled until the
interactions roughly form rectangular blocks. This technique is known as clustering, and the
resultant blocks are known as clusters. Some modelling tools perform an initial clustering
automatically, although the results usually need some intelligent interpretation and
adjustment.

These matrixes are used within Information Engineering to support top-down analysis - at
each stage, the clusters define the scope of several areas to be developed further in the
following stage.

A similar technique is used in analysing the structure of a legacy system.

If a clustering technique was used in the original development of the legacy system, we should
normally expect to find these clusters still existing. However, this is not always the case, as
subsequent maintenance activity may have blurred or shifted the boundaries between the
original clusters. Therefore, if the legacy system has been subject to a significant amount of
maintenance activity, it is worth confirming the clusters before proceeding.

We can simplify the interactions in various ways.We can simplify the interactions in various ways.

If the clustered matrix is too complicated, there are various ways of simplifying it.

If a data object is used by a large number of procedure objects, look for ways of partitioning
the data object.

By attribute Do some of the procedure objects
only need some of the attributes
of the data object?

The data object CUSTOMER
ACCOUNT provides access to a
complete transaction history for
this customer, but many
procedure objects only need the
attribute CUSTOMER ACCOUNT
BALANCE.

By occurrence Do some of the procedure objects
only need some of the occurrences
of the data object?

Procedures relating to the
payment of sales commission refer
to a subtype of EMPLOYEE, which
we may call SALESPERSON.

By life-cycle stage Do some of the procedure objects
only need part of the life-cycle of
the data object?

CUSTOMER PROSPECT is used by
a different set of procedure objects
to CUSTOMER.

We analyse the interactions between clusters.We analyse the interactions between clusters.

We start from the assumption that each of the clusters we have identified in the legacy system
is a candidate for conversion into a proper component.

Having identified the clusters, we look at the CRUD interactions that fall outside the cluster
blocks in the clustered matrix. These represent interactions between the candidate
components.

SCIPIO Legacy

© Copyright 1998 Richard Veryard Page 16

We can then draw an interaction diagram showing the interactions between these clusters.
(Thus we regard the legacy system as a collaboration between clusters.) Figure 9 shows an
exchange diagram that corresponds to the clustered matrix in Figure 8. With further analysis,
we could draw a UML-style sequence diagram or collaboration diagram, although this is often
unnecessary.

Figure 9: Interactions between clusters.

We analyse the business rules that belong to each cluster.We analyse the business rules that belong to each cluster.

Figure 10 shows a project assignment system, which we have analysed as a collaboration
between three clusters: PROJECT, EMPLOYEE and ASSIGNMENT. We might expect this to fall
naturally into three components.

PROJECT EMPLOYEE

ASSIGNMENT

PROJECT ASSIGNMENT SYSTEM

business
rules

Figure 10: Legacy system drawn as single collaboration.

However, when we look at the business rules that are contained within the system, we find
they fall into four categories.

v Business rules relating to employees alone.

v Business rules relating to projects alone.

v Business rules relating to employees and assignments.

SCIPIO Legacy

© Copyright 1998 Richard Veryard Page 17

v Business rules relating to projects and assignments.

There are no business rules relating to assignments in isolation. Indeed, assignments
themselves have no meaning in isolation.

In situations where the business rules are many and/or complex, it is useful to draw a rule
hierarchy diagram. Sometimes it emerges from this analysis that the legacy system has
implemented the business rules inefficiently or inconsistently, or that there are apparent
loopholes in the system. This creates an opportunity to correct the business rules (with
appropriate validation and verification involving business users and domain experts) before
allocating the rules to the components.

Looking at the business rules would lead to an alternative way of dividing up the legacy system
into two components: PROJECT ASSIGNMENT and EMPLOYEE ASSIGNMENT, as shown in Figure
11. Each business rule is allocated to one of these two components. The interface between the
two components is concerned with maintaining a consistent link between ASSIGNMENT within
PROJECT ASSIGNMENT, and ASSIGNMENT within EMPLOYEE ASSIGNMENT.

EMPLOYEE ASSIGNMENT

ASSIGNMENT

EMPLOYEEPROJECT

ASSIGNMENT

PROJECT ASSIGNMENT

Figure 11: Legacy system divided into two collaborating subsystems.

Another advantage of this approach is that it focuses the creation of components on the
project-assignment relationship and the employee-assignment relationship. If these two
relationships can be generalized, we may be able to create components that will be suitable for
a range of other situations. Indeed, at a suitable level of abstraction, we may be able to
identify a significant amount of common behaviour between these two components.

SCIPIO Legacy

© Copyright 1998 Richard Veryard Page 18

Implementing the Component StructureImplementing the Component Structure

We implement the component structure in small steps.We implement the component structure in small steps.

Having analysed the legacy systems into potential components, we don't have to convert
everything at once. One of the attractive features of component-based development is the
ability to implement solutions in small steps. We may wrap and re-install one component at a
time, if this suits our budgets and priorities. Or we may wait until an enhancement request
affects a given area, and attempt to find a component-based solution that satisfies the
enhancement request.

We implement components according to specificWe implement components according to specific
requirements and opportunities.requirements and opportunities.

Component-Based DevelopmentComponent-Based Development

v New systems can be build as components.

v It’s not necessary to enforce CBD on all development projects at once.

v New components and systems always connect via specified interfaces.

v Existing functionality needed by new systems should be converted into components.

Component-Based MaintenanceComponent-Based Maintenance

v Look at maintenance history and trends.

v Look at opportunities to hide data complexity or business logic inside special components.

v Each act of maintenance should aim to make the overall system MORE flexible.

SCIPIO Legacy

© Copyright 1998 Richard Veryard Page 19

ReferencesReferences

SCIPIO Development Process Framework. Available on the web at http://www.scipio.org/

SCIPIO: CBD for Year 2000 and Euro. Available on the web at http://www.scipio.org/

