Linux File System Study Guide

Copyright © 1998, 1999 P. Tobin Maginnis
This document isfree; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation.

1. Describetherole of afile manager.
A file manager has four basic roles:

I. Trandatefile names (user-defined data units or UDDUS) into volume relative addresses (disk
blocks).
ii. Provide protection in amulti-user environmert.
lii. Move data between user space buffers and logica OS blocks fragmenting and re-assembling as
required.
iv. Traverse amapping structure in which the file manager dlocates and de-alocates|ogica
operating system (OS) blocksto individua UDDUs.

Thefirg two roles are public (part of the OS's user interface) while the last two are internd to the
kernd. Higtoricaly, the public view of the Unix file manager has changed little, but the mapping
sructure changes with each implementation of Unix as wdl as among versons of the same Unix
implementation.

2. DescribeLinux'sfile manager.

Other Unix implementations have just one file manager, but Linux combines one file manager front-

end (file name trandation and protection) with many back-ends (mapping structure and user buffer
management). The Linux "netive’ root file system is usualy "ext2" format but may be aMINIX file
format. The more common mounted volumes are proc, NFS, msdos, Novell, OS's, Windows NT, CD-
ROM, or Windows file sharing. There are d <o file manager back-ends for other versions of Unix such
as Xenix, System V, and Coherent.

The ability to have multiple file manager back-endsin Linux is afundamenta design innovation not
seen in any other common operating system. Multiple back-ends alow Linux to be configured and
adapt to many unique Stuations that other operating systems are unable to handle.

3. Describeatypical file manager mapping structurethat allocates and de-allocates logical
operating system (OS) blocks.

The hard disk (partition) is divided into four areas. an adminigtrative description of the hard disk
(super block), one or more areas of index lists (inodes), dlocated file data pointed to by the index lists
(directories and regular files), and lists of yet-to-be-used blocks (the free list).

Before afile system can be used (mounted), it must be pre-formatted (mkfs) for the file manager.
Mounted file systems present a " point- of- no-return” problem for the file manager. Usudly thefile
manager just checks the super block to seeif the volume has the correct format and, if so, assumes the
other structures (like the inode list) are vaid. Dependina on the tvpe of file manaoer and where the

volume is mounted, a corrupted partition will crash the operating system since the file manager must
rely upon the file structure for access to system programs.

. Explain theroleof Linux's" special" filesand describe five examples.

Like Unix, Linux uses the file manager to create "system abstractions’ or pecid purpose files. These
congtructs are not files a al, but kerndl device drivers and other "logicd" driversthat perform unique
functions when accessed as afile.

a. /dev/inull - The"rat hole" dumpsinput into the "bit bucket" when written and returns end- of-
file when reed.

/dev/zeros - When read, it returns a buffer full of zeros.

/devitty - When accessed, it dways points to the program'’s specific controlling /dev/ttyx.
/dev/hdal - Provides direct access to the hard disk without file manager interpretation.

e. /dev/ram - Makes high memory look like a hard disk (for rescue).

. Explain how the" /proc" abstraction hasevolved in Linux compared to other Unix
implementations.

oo o

Higoricaly, Unix alowed user accessto kernel variables and the currently running user process
through /dev/kmem and /dev/umem absiractions. Assuming the kerndl or user object modules were not
stripped of their symbol tables, a debugger could be used to access to the kernd's or users variables
through /dev/kmem or /dev/umem. In more recent versions of Unix, the /proc directory was created
and combined with alogicd driver. This design was better than before, but it ill required "ioctl”
sarvice calsto access kernd variables.

Linux has extended this concept by creating a separate file system manager back-end called "/proc”
which is mounted like other file systems. The /proc manager separates parts of the kernd into
directories. Accessing agiven /proc file yidds the variable name and vaue. The /proc abgtraction dso
permits access to user process aswell as many device drivers.

. Describe how thefile system structure and the mount command work to create a transpar ent
file system.
Thefirg block of the file system (super block) contains a volume relative index to one or more
"inode" sections.
I. Inodes, in turn, index to directory files and regular files.
ii. Frdainode dways"points' to root directory file.
iii. The booted root file system is "hard wired" into the kernel image (see rdev).
iv. A mounted directory isthe root directory of the mounted file system.

To access afile, the file manager must first decode a sevies of directories or "path components.” Asthe
inode number for each component is discovered in adirectory, the mount table is consulted to see if
that inode number had been previoudy used to mount another volume (file system). If the inode
number was in the mount table, the contents of the inode are ignored and, instead, inode number one
in the new file system is accessed.

. Describe the argumentsto the mount command and explain therole of the /etc/fstab file. Also,
explain why some mount commands without arguments seem to work.

The Linux command mount -t fstype device mount-directory takes at least three arguments. -t fstype refersto
one of the 12 ble file managers. device refers to the device driver that can access specific storaoe

devices such as/dev/fd0, and mount-directory refersto an exigting directory in the file hierarchy. Note
that any files contained in the directory will be hidden by the mount operation.

The /etc/fstab configuraion file contains aligt of file syslems and arguments. The mount, umount, and
fsck commands reed thisfile to discover details about the available file systems.

file system mount point type options dump pass
/dev/sdal / ext2 defaults,errorssremount-ro 0 1
/dev/sda2 none swap sw 0 0

proc /proc proc defaults 00

/dev/sda3 [usr ext2 defaults 0 2

/dev/fd0 /floppy msdos noauto,conv=auto,user 0 O
/dev/cdrom /cdrom 1S09660 noauto,ro,user 0 0

If the mount command is given with just one argument and it matches one of the rowsin faab, the
other fieldsin the row are taken as arguments for the command. Given the above fstab file and the
command mount /cdrom, the resulting command would be mount -t cdrom -o ro /dev/cdrom /cdrom The
"noauto” kegps mount from automaticaly mounting the floppy or CD at boot time while the "user”
option dlows a nonsuperuser account to mount the floppy or CD.

Explain wher e the file manager back-ends are located and how they are activated.

File manager back-ends are either compiled directly into the kernel image or dynamicaly loaded as
"device driver" modules. To see which back-ends a given kernd contains, examine the /proc/filesystems
file. Its contents might look like this:

ext2
minix
msdos
nodev proc
1S09660
umsdos
nodev nfs

indicating that, a the moment, this kernd supports seven file manager back-ends.

Access to additiond file manager back-ends are provided through the load module library and are
found in the /lib/modules’2.x.x/fs directory. These file manager back-ends are dynamicaly loaded into the
kernd when the volume is mounted. Example loadable back-ends are:

autofs.o hpfso minix.o nfs.o sysv.o umsdos.o xiafs.o
ext.o isofs.o ncpfs.o smbfso ufs.o vfat.o

A file manager back-end is activated when itsfile system is entered as part of a path traversa to reach
adedred file. Linux usudly beginswith its native ext2 file manager and switches asit enters the
mounted volume,

10.

11.

12.

mounted volume.

Explain how the M SDOS file manager back-end mapsincompatibilities between MSDOSand
Linux files.

Linux (Unix) ASCII files use one character (the LF or \n) to indicate end-of-line. MS-DOS employs
two characters (the CRLF or \r\n pair) to show end-of-line. Linux (Unix) employs multi-group
permissions and other file atributes while MS-DOS has just afew attributes (hidden, archive, read

only).

The MS-DOS file manager back-end, therefore, must map a Linux (Unix) \n to \r\n asthefileis
written onto the M S-DOS volume. Coming from aMS-DOS volume, the file manager back-end must
give additiona permissons (rwxrwixr-x root root) and map \r\n to \n. File manager back-end mappings
are controlled by additiona arguments added to the mount command. For example, mount -t msdos -o
conv=auto /dev/fdo /floppy tdlls the file manager back-end not to do the above mapping if the MS-DOS
file has a common binary extenson such as"exe."

Explain the conflictsthat removable media introduce into a multi-user, data cached operating
system and possible solutions.

Use of the mount and umount commands indicate that the file manager maintains "sate” information
about avolume. Users dlocate entries in kernd data structures when they "open” agiven file. If a
mounted CD-ROM or floppy is removed, then the file manager is unable to complete its accounting
information for users accessing the volume. Furthermore, files written to the volume may ill bein
the data cache and not yet written to the floppy.

The solution isto prevent a user from removing the media. The gect button on the CD-ROM drive,
for example, is disabled while the volume is mounted. In the case of the floppy disk, thereisno
solution other than to restrict floppy disk access to the console termindl. Linux alows users access to
any mounted volume.

When using the umount command, explain what the error message " /dev/xxx busy" really
means.

The"gate" information described above includes a " count™ of the number of processes nga
giveninode. If one atempts to unmount an inode with a non-zero reference count, then theinode is
"busy" since the other processes wish to read/write to or through the mounted inode.

The "busy" count could aso refer to the person issuing the umount command if their current working
directory ison or below the mounted directory.

Explain why onewould recelve the error message " mount: /dev/cdrom isnot a valid block
device."

The mount utility attempts minima error checking before it redly mounts the new volume. Once the
first block isread in, its contents are compared to a key constant (magic number) to double check that
itisavdid file sysem for that type of file manager back-end.

13.
14.

15.

16.

17.
18.
19.

20.

21.
22.
23.
24,

Explain how the fdformat and mkfs commands differ.
Describe therole of fsck and describe the three basic ways a block could be missing or
duplicated in a fully-indexed file system.
0. Freelist block numbers, file block numbers, and inode block numbers may be double
referenced in onelig, referenced in more that one ligt, or have no reference.
1. Andlocated inode may not have adirectory entry (orphaned file) or a directory entry may
reference afreeinode.
2. Szeof afilemay differ from itsblock count.
Describe the different types of pages and how they relate to swapping.

Linux divides up memory into process, shared process, shared library, and data cache aress. After
process and library memory has been dlocated, the data cache will grow to fill most of memory. As
new process are activated, memory space will be reclaimed from the data cache. After a point, the data
cache will no longer give up memory and idle pages are moved to the siwapping disk to make room for
new processes. On the Intel architecture, a“page’ is 4096 bytes. The read only shared pages have high
priority and tend to stay in memory, but when their space is needed, they are overwritten to improve

Sswapping speed.

Describe the results of the free command.

total used free shared buffers cached
Mem: 14092 12288 1804 17456 1100 5588
Swap: 40156 24 40132

Physicd memory is 16 MB and about 2 MB is used by the kernd. Thusthe "total" remaining is 14
MB, and about 12 MB has been "used” or allocated to user programs and 2 MB are "free”’ or heldin
reserve for new processes.

Of the "used" 12 MB, 1 MB has been dlocated to "buffers’ or permanent data cache while another 5.5
MB of memory has been "cached" or taken over by the data cache mechanism. The remaining 3.5 MB
(used - free + buffers + cached) holds about 17 MB of "shared" code. Thus, processes share 3.5 MB of
physical memory while executing asif they had 17 MB of memory.

Even though there is 40 MB of swap space, only 24 KB of it have been used.

Explain the following setup commands.
dd if=/dev/zero of=/swapfile bs=1024 count=8192
mkswap swapfile 8192
#sync
swapon swapfile

Idev/zero 1S aSystem abgtraction that returns a continuous stream of null bytes. The device dump (dd)
program reads 8KB of zeros and writes a contiguous (and hopefully sequentid) file. mkswap initidizes
afreelig of swap blocks within thefile. sync movesfile blocks lft in the data cache out to the hard

disk, and swapon directs the system swapper to be used in thefile.

25. Contrast " special,” " block special,” and " character special” devices.

